Nand Jee Kanu, S. Guluwadi, Vivek Pandey, S. Suyambazhahan
{"title":"麻疯树生物合成石蜡煤油燃烧器燃烧特性的实验研究","authors":"Nand Jee Kanu, S. Guluwadi, Vivek Pandey, S. Suyambazhahan","doi":"10.1080/23080477.2021.1938503","DOIUrl":null,"url":null,"abstract":"ABSTRACT Emissions emanating from gas turbine are important and critical in terms of environmental impact. In general, oxides of nitrogen, total unburned hydrocarbon, carbon monoxide, carbon dioxide, and soot particles are the most significant emissions from gas-turbine combustion systems. In order to reduce these emissions, fuels derived from bio-origin are being increasingly used for gas-turbine combustion. Since aviation accounts for more than 5% of anthropogenic emissions, and also due to increasing pressure from governments across the globe for emission reduction, it is important to investigate pathways to reduce aviation-generated emissions. We, therefore, propose the use of Jatropha-based bio-derived synthetic paraffinic kerosene (SPK) blended with aviation turbine fuel (ATF)-Jet A1, and experimentally investigate the emission characteristics within a laboratory-scale gas-turbine combustor from proposed fuel blends. The investigation is done for two different operating conditions: operating condition 1 (OC1) and operating condition 2 (OC2). The influence of emission characteristics of the two biofuel blends, namely BF-II and BF-IV, are analyzed and compared with that of neat ATF-Jet A1. A substantial reduction of 33.5% in THC, 20% in CO, 42% in soot and increase of 40% in NO x and 28.7% in CO2 emissions are evident for BF-II fuel in comparison to ATF with OC1. However, at OC2, these emission reductions are less with increased NO x emissions of 50.2% in comparison to that of ATF. In addition, for the fuel BF-IV, there have been reductions of 57.2% THC, 33.3% CO, 67.1% soot and increase of 49.4% NO x and 43.9% CO2 emissions as compared with ATF at OC1. Also THC, CO, soot, and CO2 emissions are reduced considerably with increased NO x emissions for BF-IV fuel at OC2. Graphical Abstract","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"9 1","pages":"305 - 316"},"PeriodicalIF":2.4000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23080477.2021.1938503","citationCount":"5","resultStr":"{\"title\":\"Experimental Investigation of Emission Characteristics on Can-Combustor Using Jatropha Based Bio-derived Synthetic Paraffinic Kerosene\",\"authors\":\"Nand Jee Kanu, S. Guluwadi, Vivek Pandey, S. Suyambazhahan\",\"doi\":\"10.1080/23080477.2021.1938503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Emissions emanating from gas turbine are important and critical in terms of environmental impact. In general, oxides of nitrogen, total unburned hydrocarbon, carbon monoxide, carbon dioxide, and soot particles are the most significant emissions from gas-turbine combustion systems. In order to reduce these emissions, fuels derived from bio-origin are being increasingly used for gas-turbine combustion. Since aviation accounts for more than 5% of anthropogenic emissions, and also due to increasing pressure from governments across the globe for emission reduction, it is important to investigate pathways to reduce aviation-generated emissions. We, therefore, propose the use of Jatropha-based bio-derived synthetic paraffinic kerosene (SPK) blended with aviation turbine fuel (ATF)-Jet A1, and experimentally investigate the emission characteristics within a laboratory-scale gas-turbine combustor from proposed fuel blends. The investigation is done for two different operating conditions: operating condition 1 (OC1) and operating condition 2 (OC2). The influence of emission characteristics of the two biofuel blends, namely BF-II and BF-IV, are analyzed and compared with that of neat ATF-Jet A1. A substantial reduction of 33.5% in THC, 20% in CO, 42% in soot and increase of 40% in NO x and 28.7% in CO2 emissions are evident for BF-II fuel in comparison to ATF with OC1. However, at OC2, these emission reductions are less with increased NO x emissions of 50.2% in comparison to that of ATF. In addition, for the fuel BF-IV, there have been reductions of 57.2% THC, 33.3% CO, 67.1% soot and increase of 49.4% NO x and 43.9% CO2 emissions as compared with ATF at OC1. Also THC, CO, soot, and CO2 emissions are reduced considerably with increased NO x emissions for BF-IV fuel at OC2. Graphical Abstract\",\"PeriodicalId\":53436,\"journal\":{\"name\":\"Smart Science\",\"volume\":\"9 1\",\"pages\":\"305 - 316\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23080477.2021.1938503\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23080477.2021.1938503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23080477.2021.1938503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Experimental Investigation of Emission Characteristics on Can-Combustor Using Jatropha Based Bio-derived Synthetic Paraffinic Kerosene
ABSTRACT Emissions emanating from gas turbine are important and critical in terms of environmental impact. In general, oxides of nitrogen, total unburned hydrocarbon, carbon monoxide, carbon dioxide, and soot particles are the most significant emissions from gas-turbine combustion systems. In order to reduce these emissions, fuels derived from bio-origin are being increasingly used for gas-turbine combustion. Since aviation accounts for more than 5% of anthropogenic emissions, and also due to increasing pressure from governments across the globe for emission reduction, it is important to investigate pathways to reduce aviation-generated emissions. We, therefore, propose the use of Jatropha-based bio-derived synthetic paraffinic kerosene (SPK) blended with aviation turbine fuel (ATF)-Jet A1, and experimentally investigate the emission characteristics within a laboratory-scale gas-turbine combustor from proposed fuel blends. The investigation is done for two different operating conditions: operating condition 1 (OC1) and operating condition 2 (OC2). The influence of emission characteristics of the two biofuel blends, namely BF-II and BF-IV, are analyzed and compared with that of neat ATF-Jet A1. A substantial reduction of 33.5% in THC, 20% in CO, 42% in soot and increase of 40% in NO x and 28.7% in CO2 emissions are evident for BF-II fuel in comparison to ATF with OC1. However, at OC2, these emission reductions are less with increased NO x emissions of 50.2% in comparison to that of ATF. In addition, for the fuel BF-IV, there have been reductions of 57.2% THC, 33.3% CO, 67.1% soot and increase of 49.4% NO x and 43.9% CO2 emissions as compared with ATF at OC1. Also THC, CO, soot, and CO2 emissions are reduced considerably with increased NO x emissions for BF-IV fuel at OC2. Graphical Abstract
期刊介绍:
Smart Science (ISSN 2308-0477) is an international, peer-reviewed journal that publishes significant original scientific researches, and reviews and analyses of current research and science policy. We welcome submissions of high quality papers from all fields of science and from any source. Articles of an interdisciplinary nature are particularly welcomed. Smart Science aims to be among the top multidisciplinary journals covering a broad spectrum of smart topics in the fields of materials science, chemistry, physics, engineering, medicine, and biology. Smart Science is currently focusing on the topics of Smart Manufacturing (CPS, IoT and AI) for Industry 4.0, Smart Energy and Smart Chemistry and Materials. Other specific research areas covered by the journal include, but are not limited to: 1. Smart Science in the Future 2. Smart Manufacturing: -Cyber-Physical System (CPS) -Internet of Things (IoT) and Internet of Brain (IoB) -Artificial Intelligence -Smart Computing -Smart Design/Machine -Smart Sensing -Smart Information and Networks 3. Smart Energy and Thermal/Fluidic Science 4. Smart Chemistry and Materials