Lucas Martin Wisniewski, J. Bec, G. Boguszewski, A. Gamatie
{"title":"低功耗智能边缘计算硬件解决方案","authors":"Lucas Martin Wisniewski, J. Bec, G. Boguszewski, A. Gamatie","doi":"10.3390/jlpea12040061","DOIUrl":null,"url":null,"abstract":"The edge computing paradigm for Internet-of-Things brings computing closer to data sources, such as environmental sensors and cameras, using connected smart devices. Over the last few years, research in this area has been both interesting and timely. Typical services like analysis, decision, and control, can be realized by edge computing nodes executing full-fledged algorithms. Traditionally, low-power smart edge devices have been realized using resource-constrained systems executing machine learning (ML) algorithms for identifying objects or features, making decisions, etc. Initially, this paper discusses recent advances in embedded systems that are devoted to energy-efficient ML algorithm execution. A survey of the mainstream embedded computing devices for low-power IoT and edge computing is then presented. Finally, CYSmart is introduced as an innovative smart edge computing system. Two operational use cases are presented to illustrate its power efficiency.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hardware Solutions for Low-Power Smart Edge Computing\",\"authors\":\"Lucas Martin Wisniewski, J. Bec, G. Boguszewski, A. Gamatie\",\"doi\":\"10.3390/jlpea12040061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The edge computing paradigm for Internet-of-Things brings computing closer to data sources, such as environmental sensors and cameras, using connected smart devices. Over the last few years, research in this area has been both interesting and timely. Typical services like analysis, decision, and control, can be realized by edge computing nodes executing full-fledged algorithms. Traditionally, low-power smart edge devices have been realized using resource-constrained systems executing machine learning (ML) algorithms for identifying objects or features, making decisions, etc. Initially, this paper discusses recent advances in embedded systems that are devoted to energy-efficient ML algorithm execution. A survey of the mainstream embedded computing devices for low-power IoT and edge computing is then presented. Finally, CYSmart is introduced as an innovative smart edge computing system. Two operational use cases are presented to illustrate its power efficiency.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea12040061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea12040061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hardware Solutions for Low-Power Smart Edge Computing
The edge computing paradigm for Internet-of-Things brings computing closer to data sources, such as environmental sensors and cameras, using connected smart devices. Over the last few years, research in this area has been both interesting and timely. Typical services like analysis, decision, and control, can be realized by edge computing nodes executing full-fledged algorithms. Traditionally, low-power smart edge devices have been realized using resource-constrained systems executing machine learning (ML) algorithms for identifying objects or features, making decisions, etc. Initially, this paper discusses recent advances in embedded systems that are devoted to energy-efficient ML algorithm execution. A survey of the mainstream embedded computing devices for low-power IoT and edge computing is then presented. Finally, CYSmart is introduced as an innovative smart edge computing system. Two operational use cases are presented to illustrate its power efficiency.