Meijiao Wang, Yanhai Liu, Guangui Zou, De-Lin Teng, Jiasheng She
{"title":"基于模型的声阻抗反演在薄互层煤层预测中的应用——以云南玉王煤矿为例","authors":"Meijiao Wang, Yanhai Liu, Guangui Zou, De-Lin Teng, Jiasheng She","doi":"10.1080/08123985.2022.2155514","DOIUrl":null,"url":null,"abstract":"The Permian coal seams in eastern Yunnan and western Guizhou are thin, numerous, and staggered with other thin coal seams. Depicting the fine characteristics of coal reservoirs is pivotal for the safe and efficient exploitation of coal and coalbed methane (CBM), and is important for transparent mining. To improve the inverse resolution and accuracy of predicting reservoir thickness, this study used the model-based acoustic impedance (AI) inversion method that utilizes seismic and logging data. This method changes seismic data, reflecting stratigraphic interfaces, into AI data, reflecting lithologic structures. Moreover, it avoids the relevant assumptions of wavelets and reflection coefficients. Compared with other inversion methods, model-based AI inversion strengthens the description of thin reservoir horizontal and vertical changes. The results showed that comprehensively using intermediate-frequency seismic information and high-low-frequency logging data greatly broadens the seismic data frequency band and improves the dominant frequency of the reflected wave. Furthermore, the AI profile resolution and the prediction accuracy of the physical parameters for the target geological body can be improved. A cross-validation comparing the inverted thickness and measured thickness of borehole cores was applied to achieve fine prediction (error of appropriately 0.02–0.4 m), providing a basis for CBM development.","PeriodicalId":50460,"journal":{"name":"Exploration Geophysics","volume":"54 1","pages":"407 - 415"},"PeriodicalIF":0.6000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of model-based acoustic impedance inversion in the prediction of thin interbedded coal seams: a case study in the Yuwang colliery, Yunnan Province\",\"authors\":\"Meijiao Wang, Yanhai Liu, Guangui Zou, De-Lin Teng, Jiasheng She\",\"doi\":\"10.1080/08123985.2022.2155514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Permian coal seams in eastern Yunnan and western Guizhou are thin, numerous, and staggered with other thin coal seams. Depicting the fine characteristics of coal reservoirs is pivotal for the safe and efficient exploitation of coal and coalbed methane (CBM), and is important for transparent mining. To improve the inverse resolution and accuracy of predicting reservoir thickness, this study used the model-based acoustic impedance (AI) inversion method that utilizes seismic and logging data. This method changes seismic data, reflecting stratigraphic interfaces, into AI data, reflecting lithologic structures. Moreover, it avoids the relevant assumptions of wavelets and reflection coefficients. Compared with other inversion methods, model-based AI inversion strengthens the description of thin reservoir horizontal and vertical changes. The results showed that comprehensively using intermediate-frequency seismic information and high-low-frequency logging data greatly broadens the seismic data frequency band and improves the dominant frequency of the reflected wave. Furthermore, the AI profile resolution and the prediction accuracy of the physical parameters for the target geological body can be improved. A cross-validation comparing the inverted thickness and measured thickness of borehole cores was applied to achieve fine prediction (error of appropriately 0.02–0.4 m), providing a basis for CBM development.\",\"PeriodicalId\":50460,\"journal\":{\"name\":\"Exploration Geophysics\",\"volume\":\"54 1\",\"pages\":\"407 - 415\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploration Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/08123985.2022.2155514\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2022.2155514","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Application of model-based acoustic impedance inversion in the prediction of thin interbedded coal seams: a case study in the Yuwang colliery, Yunnan Province
The Permian coal seams in eastern Yunnan and western Guizhou are thin, numerous, and staggered with other thin coal seams. Depicting the fine characteristics of coal reservoirs is pivotal for the safe and efficient exploitation of coal and coalbed methane (CBM), and is important for transparent mining. To improve the inverse resolution and accuracy of predicting reservoir thickness, this study used the model-based acoustic impedance (AI) inversion method that utilizes seismic and logging data. This method changes seismic data, reflecting stratigraphic interfaces, into AI data, reflecting lithologic structures. Moreover, it avoids the relevant assumptions of wavelets and reflection coefficients. Compared with other inversion methods, model-based AI inversion strengthens the description of thin reservoir horizontal and vertical changes. The results showed that comprehensively using intermediate-frequency seismic information and high-low-frequency logging data greatly broadens the seismic data frequency band and improves the dominant frequency of the reflected wave. Furthermore, the AI profile resolution and the prediction accuracy of the physical parameters for the target geological body can be improved. A cross-validation comparing the inverted thickness and measured thickness of borehole cores was applied to achieve fine prediction (error of appropriately 0.02–0.4 m), providing a basis for CBM development.
期刊介绍:
Exploration Geophysics is published on behalf of the Australian Society of Exploration Geophysicists (ASEG), Society of Exploration Geophysics of Japan (SEGJ), and Korean Society of Earth and Exploration Geophysicists (KSEG).
The journal presents significant case histories, advances in data interpretation, and theoretical developments resulting from original research in exploration and applied geophysics. Papers that may have implications for field practice in Australia, even if they report work from other continents, will be welcome. ´Exploration and applied geophysics´ will be interpreted broadly by the editors, so that geotechnical and environmental studies are by no means precluded.
Papers are expected to be of a high standard. Exploration Geophysics uses an international pool of reviewers drawn from industry and academic authorities as selected by the editorial panel.
The journal provides a common meeting ground for geophysicists active in either field studies or basic research.