{"title":"制度交换下金融衍生品价格函数的多项式上下界","authors":"Louis Bhim, Ray Kawai","doi":"10.21314/JCF.2018.352","DOIUrl":null,"url":null,"abstract":"We present a new approach to bounding financial derivative prices in regime-switching market models from both above and below. We derive sufficient conditions under which a particular class of functions act as bounds for the prices of financial derivatives in regime-switching market models. Using these sufficient conditions, we then formulate, in a general setting, optimization problems whose solutions can be identified with tight upper and lower bounds. The problems are made numerically tractable by imposing polynomial structures and employing results from the theory of sum-of-squares polynomials to arrive at a semidefinite programming problem that is implementable by existing software. The bounds obtained take the form of smooth polynomial functions and are valid for a continuous range of initial times and states. Moreover, they are obtained without recourse to sample path simulation or discretization of the temporal or spatial variables. We demonstrate the effectiveness of the proposed method on European-, barrier- and American-style options in several regime-switching settings with and without jumps.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polynomial Upper and Lower Bounds for Financial Derivative Price Functions under Regime-Switching\",\"authors\":\"Louis Bhim, Ray Kawai\",\"doi\":\"10.21314/JCF.2018.352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new approach to bounding financial derivative prices in regime-switching market models from both above and below. We derive sufficient conditions under which a particular class of functions act as bounds for the prices of financial derivatives in regime-switching market models. Using these sufficient conditions, we then formulate, in a general setting, optimization problems whose solutions can be identified with tight upper and lower bounds. The problems are made numerically tractable by imposing polynomial structures and employing results from the theory of sum-of-squares polynomials to arrive at a semidefinite programming problem that is implementable by existing software. The bounds obtained take the form of smooth polynomial functions and are valid for a continuous range of initial times and states. Moreover, they are obtained without recourse to sample path simulation or discretization of the temporal or spatial variables. We demonstrate the effectiveness of the proposed method on European-, barrier- and American-style options in several regime-switching settings with and without jumps.\",\"PeriodicalId\":51731,\"journal\":{\"name\":\"Journal of Computational Finance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/JCF.2018.352\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JCF.2018.352","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Polynomial Upper and Lower Bounds for Financial Derivative Price Functions under Regime-Switching
We present a new approach to bounding financial derivative prices in regime-switching market models from both above and below. We derive sufficient conditions under which a particular class of functions act as bounds for the prices of financial derivatives in regime-switching market models. Using these sufficient conditions, we then formulate, in a general setting, optimization problems whose solutions can be identified with tight upper and lower bounds. The problems are made numerically tractable by imposing polynomial structures and employing results from the theory of sum-of-squares polynomials to arrive at a semidefinite programming problem that is implementable by existing software. The bounds obtained take the form of smooth polynomial functions and are valid for a continuous range of initial times and states. Moreover, they are obtained without recourse to sample path simulation or discretization of the temporal or spatial variables. We demonstrate the effectiveness of the proposed method on European-, barrier- and American-style options in several regime-switching settings with and without jumps.
期刊介绍:
The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.