{"title":"虚拟网络功能布局和路由问题的两个扩展公式","authors":"Ahlam Mouaci, É. Gourdin, Ivana Ljubic, N. Perrot","doi":"10.1002/net.22144","DOIUrl":null,"url":null,"abstract":"Given a bi‐directed graph modeling a telecommunication network, and a set of origin‐destination pairs representing traffic requests (commodities) along with their associated Service Function Chains (SFCs), the Virtual Network Function Placement and Routing Problem (VNFPRP) aims to find, for each commodity, one latency‐constrained routing path that visits the required Virtual Network Functions in a specific order. The function installation costs together with the node activation costs have to be minimized. In this paper, we present two extended Mixed Integer Programming (MIP) formulations to model the VNFPRP. For each formulation we define the master problem, the pricing problem, the associated Lagrangian bound and a specific branching scheme, in order to derive an efficient Branch‐and‐Price algorithm. We also provide several families of valid inequalities to strengthen the LP‐relaxation bounds. Computational results are reported comparing the performance of the two Branch‐and‐Price algorithms with a compact MIP formulation and its Branch‐and‐Benders‐cut implementation on a set of SNDlib instances representing telecommunication networks.","PeriodicalId":54734,"journal":{"name":"Networks","volume":"82 1","pages":"32 - 51"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two extended formulations for the virtual network function placement and routing problem\",\"authors\":\"Ahlam Mouaci, É. Gourdin, Ivana Ljubic, N. Perrot\",\"doi\":\"10.1002/net.22144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a bi‐directed graph modeling a telecommunication network, and a set of origin‐destination pairs representing traffic requests (commodities) along with their associated Service Function Chains (SFCs), the Virtual Network Function Placement and Routing Problem (VNFPRP) aims to find, for each commodity, one latency‐constrained routing path that visits the required Virtual Network Functions in a specific order. The function installation costs together with the node activation costs have to be minimized. In this paper, we present two extended Mixed Integer Programming (MIP) formulations to model the VNFPRP. For each formulation we define the master problem, the pricing problem, the associated Lagrangian bound and a specific branching scheme, in order to derive an efficient Branch‐and‐Price algorithm. We also provide several families of valid inequalities to strengthen the LP‐relaxation bounds. Computational results are reported comparing the performance of the two Branch‐and‐Price algorithms with a compact MIP formulation and its Branch‐and‐Benders‐cut implementation on a set of SNDlib instances representing telecommunication networks.\",\"PeriodicalId\":54734,\"journal\":{\"name\":\"Networks\",\"volume\":\"82 1\",\"pages\":\"32 - 51\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/net.22144\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22144","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Two extended formulations for the virtual network function placement and routing problem
Given a bi‐directed graph modeling a telecommunication network, and a set of origin‐destination pairs representing traffic requests (commodities) along with their associated Service Function Chains (SFCs), the Virtual Network Function Placement and Routing Problem (VNFPRP) aims to find, for each commodity, one latency‐constrained routing path that visits the required Virtual Network Functions in a specific order. The function installation costs together with the node activation costs have to be minimized. In this paper, we present two extended Mixed Integer Programming (MIP) formulations to model the VNFPRP. For each formulation we define the master problem, the pricing problem, the associated Lagrangian bound and a specific branching scheme, in order to derive an efficient Branch‐and‐Price algorithm. We also provide several families of valid inequalities to strengthen the LP‐relaxation bounds. Computational results are reported comparing the performance of the two Branch‐and‐Price algorithms with a compact MIP formulation and its Branch‐and‐Benders‐cut implementation on a set of SNDlib instances representing telecommunication networks.
期刊介绍:
Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context.
The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics.
Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.