{"title":"超高层建筑服务核心减少的影响:结构设计、隐含碳和可出租建筑面积的研究","authors":"Beste Fakıoğlu Gedik, B. Ay","doi":"10.1080/00038628.2023.2182271","DOIUrl":null,"url":null,"abstract":"Optimizing the building core is a fundamental goal in tall building design The area dedicated to elevators, which are among the most area-consuming elements in the core, might be considerably reduced with recent technological advancements. This study investigates the trade-offs of core reduction resulting from the elevator footprint decrease in supertall buildings since the core usually serves as a significant member of the structural system. An analytical model with an outriggered frame system representative of supertall office buildings is generated, and then a second model is reproduced by reducing its core. Structurally modified reduced core models satisfying lateral drift limits are produced and evaluated in terms of architectural, economic, and environmental aspects. The results showed that a gain in the leasable area is possible but at the expense of higher cumulative embodied carbon and material consumption. These outcomes provide a comprehensive perspective for structural design considerations, particularly core optimization for tall buildings with outriggers.","PeriodicalId":47295,"journal":{"name":"Architectural Science Review","volume":"66 1","pages":"144 - 153"},"PeriodicalIF":1.8000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The impact of service core reduction in supertall buildings: a study on structural design, embodied carbon, and leasable floor area\",\"authors\":\"Beste Fakıoğlu Gedik, B. Ay\",\"doi\":\"10.1080/00038628.2023.2182271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing the building core is a fundamental goal in tall building design The area dedicated to elevators, which are among the most area-consuming elements in the core, might be considerably reduced with recent technological advancements. This study investigates the trade-offs of core reduction resulting from the elevator footprint decrease in supertall buildings since the core usually serves as a significant member of the structural system. An analytical model with an outriggered frame system representative of supertall office buildings is generated, and then a second model is reproduced by reducing its core. Structurally modified reduced core models satisfying lateral drift limits are produced and evaluated in terms of architectural, economic, and environmental aspects. The results showed that a gain in the leasable area is possible but at the expense of higher cumulative embodied carbon and material consumption. These outcomes provide a comprehensive perspective for structural design considerations, particularly core optimization for tall buildings with outriggers.\",\"PeriodicalId\":47295,\"journal\":{\"name\":\"Architectural Science Review\",\"volume\":\"66 1\",\"pages\":\"144 - 153\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architectural Science Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00038628.2023.2182271\",\"RegionNum\":3,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architectural Science Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00038628.2023.2182271","RegionNum":3,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
The impact of service core reduction in supertall buildings: a study on structural design, embodied carbon, and leasable floor area
Optimizing the building core is a fundamental goal in tall building design The area dedicated to elevators, which are among the most area-consuming elements in the core, might be considerably reduced with recent technological advancements. This study investigates the trade-offs of core reduction resulting from the elevator footprint decrease in supertall buildings since the core usually serves as a significant member of the structural system. An analytical model with an outriggered frame system representative of supertall office buildings is generated, and then a second model is reproduced by reducing its core. Structurally modified reduced core models satisfying lateral drift limits are produced and evaluated in terms of architectural, economic, and environmental aspects. The results showed that a gain in the leasable area is possible but at the expense of higher cumulative embodied carbon and material consumption. These outcomes provide a comprehensive perspective for structural design considerations, particularly core optimization for tall buildings with outriggers.
期刊介绍:
Founded at the University of Sydney in 1958 by Professor Henry Cowan to promote continued professional development, Architectural Science Review presents a balanced collection of papers on a wide range of topics. From its first issue over 50 years ago the journal documents the profession’s interest in environmental issues, covering topics such as thermal comfort, lighting, and sustainable architecture, contributing to this extensive field of knowledge by seeking papers from a broad geographical area. The journal is supported by an international editorial advisory board of the leading international academics and its reputation has increased globally with individual and institutional subscribers and contributors from around the world. As a result, Architectural Science Review continues to be recognised as not only one of the first, but the leading journal devoted to architectural science, technology and the built environment. Architectural Science Review publishes original research papers, shorter research notes, and abstracts of PhD dissertations and theses in all areas of architectural science including: -building science and technology -environmental sustainability -structures and materials -audio and acoustics -illumination -thermal systems -building physics -building services -building climatology -building economics -ergonomics -history and theory of architectural science -the social sciences of architecture