锁模光纤激光器产生皮秒脉冲的两个关键前沿问题研究

Q4 Engineering 强激光与粒子束 Pub Date : 2020-12-15 DOI:10.11884/HPLPB202032.200210
Lu Qiao, Mao Qinghe
{"title":"锁模光纤激光器产生皮秒脉冲的两个关键前沿问题研究","authors":"Lu Qiao, Mao Qinghe","doi":"10.11884/HPLPB202032.200210","DOIUrl":null,"url":null,"abstract":"Narrowband dissipative soliton mode-locked fiber lasers can produce transform-limited picosecond pulses. Unfortunately, due to the limitation of allowable nonlinear phase shift for the intracavity pulse, the repetition rate of the pulses generated by such lasers cannot be reduced by increasing the cavity length; the pulse energy is only below 0.1 nJ. These seriously restrict the practical application of such picosecond pulsed fiber lasers. In this paper, we propose a method that allows the cavity length to be increased to reduce the repetition rate of the narrowband dissipative soliton picosecond fiber laser pulses by extracting the pulse energy out of the cavity a coupler to suppress the accumulation of nonlinear phase shift of the intracavity pulses. Using this method, the laser repetition rate was successfully reduced from 35.2 MHz to 1.77 MHz, and the pulse time-frequency characteristics remained unchanged. We also propose a method to suppress spectral broadening in picosecond pulse fiber amplification based on inter-stage FBG notch filtering. By simply using the inter-stage notch filter, the output pulse spectrum width after the first-stage fiber amplifier can be narrowed, allowing the second-stage fiber amplifier to further increase the pulse energy, and also, the pulse can be reshaped to near Gaussian-shaped, allowing the second-stage fiber amplifier to increase the pulse energy higher by using the Gaussian pulse characteristics of the smaller spectral broadening slope. Using this method, on the premise of keeping the RMS spectral width within 0.4 nm, after a 10 ps pulse passes through a standard single-mode fiber amplifier, the pulse energy can be increased from 0.2 nJ to more than 10 nJ.","PeriodicalId":39871,"journal":{"name":"强激光与粒子束","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Researches on two key frontier issues in picosecond pulses generated by mode-locked fiber lasers\",\"authors\":\"Lu Qiao, Mao Qinghe\",\"doi\":\"10.11884/HPLPB202032.200210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Narrowband dissipative soliton mode-locked fiber lasers can produce transform-limited picosecond pulses. Unfortunately, due to the limitation of allowable nonlinear phase shift for the intracavity pulse, the repetition rate of the pulses generated by such lasers cannot be reduced by increasing the cavity length; the pulse energy is only below 0.1 nJ. These seriously restrict the practical application of such picosecond pulsed fiber lasers. In this paper, we propose a method that allows the cavity length to be increased to reduce the repetition rate of the narrowband dissipative soliton picosecond fiber laser pulses by extracting the pulse energy out of the cavity a coupler to suppress the accumulation of nonlinear phase shift of the intracavity pulses. Using this method, the laser repetition rate was successfully reduced from 35.2 MHz to 1.77 MHz, and the pulse time-frequency characteristics remained unchanged. We also propose a method to suppress spectral broadening in picosecond pulse fiber amplification based on inter-stage FBG notch filtering. By simply using the inter-stage notch filter, the output pulse spectrum width after the first-stage fiber amplifier can be narrowed, allowing the second-stage fiber amplifier to further increase the pulse energy, and also, the pulse can be reshaped to near Gaussian-shaped, allowing the second-stage fiber amplifier to increase the pulse energy higher by using the Gaussian pulse characteristics of the smaller spectral broadening slope. Using this method, on the premise of keeping the RMS spectral width within 0.4 nm, after a 10 ps pulse passes through a standard single-mode fiber amplifier, the pulse energy can be increased from 0.2 nJ to more than 10 nJ.\",\"PeriodicalId\":39871,\"journal\":{\"name\":\"强激光与粒子束\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"强激光与粒子束\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.11884/HPLPB202032.200210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"强激光与粒子束","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11884/HPLPB202032.200210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

窄带耗散孤子锁模光纤激光器可以产生变换受限的皮秒脉冲。遗憾的是,由于腔内脉冲允许的非线性相移的限制,这种激光器产生的脉冲的重复率不能通过增加腔长来降低;脉冲能量仅低于0.1 nJ。这严重制约了皮秒脉冲光纤激光器的实际应用。在本文中,我们提出了一种方法,允许增加腔长来减少窄带耗散孤子皮秒光纤激光脉冲的重复率,通过从腔中提取脉冲能量的耦合器来抑制腔内脉冲非线性相移的积累。利用该方法,成功地将激光重复频率从35.2 MHz降低到1.77 MHz,脉冲时频特性保持不变。我们还提出了一种基于级间FBG陷波滤波抑制皮秒脉冲光纤放大频谱展宽的方法。通过简单地使用级间陷波滤波器,可以缩小第一级光纤放大器后的输出脉冲频谱宽度,从而使第二级光纤放大器进一步增加脉冲能量,并且可以将脉冲重塑为接近高斯形状,从而使第二级光纤放大器利用谱宽斜率较小的高斯脉冲特性来提高脉冲能量。利用该方法,在保持均方根谱宽在0.4 nm以内的前提下,10ps脉冲通过标准单模光纤放大器后,脉冲能量可从0.2 nJ提高到10nj以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Researches on two key frontier issues in picosecond pulses generated by mode-locked fiber lasers
Narrowband dissipative soliton mode-locked fiber lasers can produce transform-limited picosecond pulses. Unfortunately, due to the limitation of allowable nonlinear phase shift for the intracavity pulse, the repetition rate of the pulses generated by such lasers cannot be reduced by increasing the cavity length; the pulse energy is only below 0.1 nJ. These seriously restrict the practical application of such picosecond pulsed fiber lasers. In this paper, we propose a method that allows the cavity length to be increased to reduce the repetition rate of the narrowband dissipative soliton picosecond fiber laser pulses by extracting the pulse energy out of the cavity a coupler to suppress the accumulation of nonlinear phase shift of the intracavity pulses. Using this method, the laser repetition rate was successfully reduced from 35.2 MHz to 1.77 MHz, and the pulse time-frequency characteristics remained unchanged. We also propose a method to suppress spectral broadening in picosecond pulse fiber amplification based on inter-stage FBG notch filtering. By simply using the inter-stage notch filter, the output pulse spectrum width after the first-stage fiber amplifier can be narrowed, allowing the second-stage fiber amplifier to further increase the pulse energy, and also, the pulse can be reshaped to near Gaussian-shaped, allowing the second-stage fiber amplifier to increase the pulse energy higher by using the Gaussian pulse characteristics of the smaller spectral broadening slope. Using this method, on the premise of keeping the RMS spectral width within 0.4 nm, after a 10 ps pulse passes through a standard single-mode fiber amplifier, the pulse energy can be increased from 0.2 nJ to more than 10 nJ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
强激光与粒子束
强激光与粒子束 Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
11289
期刊最新文献
Progress on intra-pulse difference frequency generation in femtosecond laser Fiber-laser-pumped high-power mid-infrared optical parametric oscillator based on MgO:PPLN crystal Machine learning applications in large particle accelerator facilities: review and prospects Experimental study of high yield neutron source based on multi reaction channels Analysis of high-frequency atmospheric windows for terahertz communication between the ground and the satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1