{"title":"基于深度概率规划的超声神经分割","authors":"Iresha D. Rubasinghe, D. Meedeniya","doi":"10.5614/itbj.ict.res.appl.2019.13.3.5","DOIUrl":null,"url":null,"abstract":"Deep probabilistic programming concatenates the strengths of deep learning to the context of probabilistic modeling for efficient and flexible computation in practice. Being an evolving field, there exist only a few expressive programming languages for uncertainty management. This paper discusses an application for analysis of ultrasound nerve segmentation-based biomedical images. Our method uses the probabilistic programming language Edward with the U-Net model and generative adversarial networks under different optimizers. The segmentation process showed the least Dice loss (‑0.54) and the highest accuracy (0.99) with the Adam optimizer in the U-Net model with the least time consumption compared to other optimizers. The smallest amount of generative network loss in the generative adversarial network model gained was 0.69 for the Adam optimizer. The Dice loss, accuracy, time consumption and output image quality in the results show the applicability of deep probabilistic programming in the long run. Thus, we further propose a neuroscience decision support system based on the proposed approach.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":"13 1","pages":"241-256"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Ultrasound Nerve Segmentation Using Deep Probabilistic Programming\",\"authors\":\"Iresha D. Rubasinghe, D. Meedeniya\",\"doi\":\"10.5614/itbj.ict.res.appl.2019.13.3.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep probabilistic programming concatenates the strengths of deep learning to the context of probabilistic modeling for efficient and flexible computation in practice. Being an evolving field, there exist only a few expressive programming languages for uncertainty management. This paper discusses an application for analysis of ultrasound nerve segmentation-based biomedical images. Our method uses the probabilistic programming language Edward with the U-Net model and generative adversarial networks under different optimizers. The segmentation process showed the least Dice loss (‑0.54) and the highest accuracy (0.99) with the Adam optimizer in the U-Net model with the least time consumption compared to other optimizers. The smallest amount of generative network loss in the generative adversarial network model gained was 0.69 for the Adam optimizer. The Dice loss, accuracy, time consumption and output image quality in the results show the applicability of deep probabilistic programming in the long run. Thus, we further propose a neuroscience decision support system based on the proposed approach.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\"13 1\",\"pages\":\"241-256\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2019.13.3.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2019.13.3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Ultrasound Nerve Segmentation Using Deep Probabilistic Programming
Deep probabilistic programming concatenates the strengths of deep learning to the context of probabilistic modeling for efficient and flexible computation in practice. Being an evolving field, there exist only a few expressive programming languages for uncertainty management. This paper discusses an application for analysis of ultrasound nerve segmentation-based biomedical images. Our method uses the probabilistic programming language Edward with the U-Net model and generative adversarial networks under different optimizers. The segmentation process showed the least Dice loss (‑0.54) and the highest accuracy (0.99) with the Adam optimizer in the U-Net model with the least time consumption compared to other optimizers. The smallest amount of generative network loss in the generative adversarial network model gained was 0.69 for the Adam optimizer. The Dice loss, accuracy, time consumption and output image quality in the results show the applicability of deep probabilistic programming in the long run. Thus, we further propose a neuroscience decision support system based on the proposed approach.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.