硅灰-硅灰组合对水泥水化和硫酸盐侵蚀影响的热力学模拟

IF 1 Q4 ENGINEERING, CIVIL Civil Engineering Infrastructures Journal-CEIJ Pub Date : 2018-06-01 DOI:10.7508/CEIJ.2018.01.005
A. Tarighat, yaghout modarres, M. Mohammadi
{"title":"硅灰-硅灰组合对水泥水化和硫酸盐侵蚀影响的热力学模拟","authors":"A. Tarighat, yaghout modarres, M. Mohammadi","doi":"10.7508/CEIJ.2018.01.005","DOIUrl":null,"url":null,"abstract":"Sulfate attack is a series of physico-chemical reactions between hardened cement paste and sulfate ions. Sulfate ion penetration into the hydrated cement results in the formation of voluminous and deleterious phases such as gypsum and ettringite which are believed to cause deterioration and expansion of concrete. Concrete deterioration due to sulfate attack depends on many parameters, however, in experimental studies, the implementation of the parameters and obtaining the results in a short time are too difficult. In this paper the effect of wollastonite, with and without silica fume, on the performance of cement based materials during hydration and magnesium sulfate attack was studied by thermodynamic modeling. Thermodynamic modelling was carried out using the Gibbs free energy minimization program GEMS. By this method, in addition to investigating the type and volume of the produced material, the optimal substitution percentage of wollastonite and silica fume were studied as well. In sulfate attack, especially at higher percentages of substitution, wollasonite is not very effective in itself. Wollasonite replacement has a reverse effect on monosulfate and ettringite phases. Volume of these phases increases with addition of the substitution percentage. Substituting a portion of the cement with wollastonite and silica fume would improve sulfate resistance. Substitution of 5% of wollasonite and 10% of silica fume has shown the best performance, highest increase in C-S-H gel volume and reduction in harmful phases such as gypsum, ettringite and brucite.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Thermodynamic Modeling of the Effects of Wollastonite-Silica Fume Combination in the Cement Hydration and Sulfate Attack\",\"authors\":\"A. Tarighat, yaghout modarres, M. Mohammadi\",\"doi\":\"10.7508/CEIJ.2018.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sulfate attack is a series of physico-chemical reactions between hardened cement paste and sulfate ions. Sulfate ion penetration into the hydrated cement results in the formation of voluminous and deleterious phases such as gypsum and ettringite which are believed to cause deterioration and expansion of concrete. Concrete deterioration due to sulfate attack depends on many parameters, however, in experimental studies, the implementation of the parameters and obtaining the results in a short time are too difficult. In this paper the effect of wollastonite, with and without silica fume, on the performance of cement based materials during hydration and magnesium sulfate attack was studied by thermodynamic modeling. Thermodynamic modelling was carried out using the Gibbs free energy minimization program GEMS. By this method, in addition to investigating the type and volume of the produced material, the optimal substitution percentage of wollastonite and silica fume were studied as well. In sulfate attack, especially at higher percentages of substitution, wollasonite is not very effective in itself. Wollasonite replacement has a reverse effect on monosulfate and ettringite phases. Volume of these phases increases with addition of the substitution percentage. Substituting a portion of the cement with wollastonite and silica fume would improve sulfate resistance. Substitution of 5% of wollasonite and 10% of silica fume has shown the best performance, highest increase in C-S-H gel volume and reduction in harmful phases such as gypsum, ettringite and brucite.\",\"PeriodicalId\":43959,\"journal\":{\"name\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/CEIJ.2018.01.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/CEIJ.2018.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3

摘要

硫酸盐侵蚀是硬化水泥浆体与硫酸盐离子发生的一系列物理化学反应。硫酸盐离子渗透到水化水泥中,导致形成大量有害相,如石膏和钙矾石,这些相被认为会导致混凝土的变质和膨胀。混凝土硫酸盐侵蚀劣化取决于许多参数,但在实验研究中,参数的实现和短时间内得到结果都非常困难。本文采用热力学模型研究了硅灰石在水化和硫酸镁侵蚀过程中对水泥基材料性能的影响。利用Gibbs自由能最小化程序GEMS进行了热力学建模。通过这种方法,除了考察生产材料的种类和体积外,还研究了硅灰石和硅灰的最佳替代率。在硫酸盐侵蚀中,特别是在取代率较高的情况下,硅灰石本身并不是很有效。替代硅灰石对单硫酸盐和钙矾石相有相反的影响。这些相的体积随着取代率的增加而增加。用硅灰石和硅灰代替一部分水泥可以提高抗硫酸盐性能。替代5%硅灰石和10%硅灰的效果最好,C-S-H凝胶体积增加最多,石膏、钙矾石和水镁石等有害相减少最多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamic Modeling of the Effects of Wollastonite-Silica Fume Combination in the Cement Hydration and Sulfate Attack
Sulfate attack is a series of physico-chemical reactions between hardened cement paste and sulfate ions. Sulfate ion penetration into the hydrated cement results in the formation of voluminous and deleterious phases such as gypsum and ettringite which are believed to cause deterioration and expansion of concrete. Concrete deterioration due to sulfate attack depends on many parameters, however, in experimental studies, the implementation of the parameters and obtaining the results in a short time are too difficult. In this paper the effect of wollastonite, with and without silica fume, on the performance of cement based materials during hydration and magnesium sulfate attack was studied by thermodynamic modeling. Thermodynamic modelling was carried out using the Gibbs free energy minimization program GEMS. By this method, in addition to investigating the type and volume of the produced material, the optimal substitution percentage of wollastonite and silica fume were studied as well. In sulfate attack, especially at higher percentages of substitution, wollasonite is not very effective in itself. Wollasonite replacement has a reverse effect on monosulfate and ettringite phases. Volume of these phases increases with addition of the substitution percentage. Substituting a portion of the cement with wollastonite and silica fume would improve sulfate resistance. Substitution of 5% of wollasonite and 10% of silica fume has shown the best performance, highest increase in C-S-H gel volume and reduction in harmful phases such as gypsum, ettringite and brucite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
期刊最新文献
The effect of hydrophobic amorphous carbon powder on the compressive strength, water absorption and rheological attributes of cement mortar Damage Detection in Double Layer Grids with Modal Strain Energy Method and Dempster-Shafer Theory Building Information Modeling Deployment in Oil, Gas and Petrochemical Industry: An Adoption Roadmap The Effects of Cold-Drawn Crimped-End Steel Fibers on the Mechanical and Durability of Concrete Overlay Numerical Investigation of Nailing Pattern Effect on Nailed Wall Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1