{"title":"基于自动标签生成的弱标记数据时空特征分析的视频真实世界异常检测","authors":"Rikin J. Nayak, Jitendra P. Chaudhari","doi":"10.32985/ijeces.14.5.8","DOIUrl":null,"url":null,"abstract":"Detecting anomalies in videos is a complex task due to diverse content, noisy labeling, and a lack of frame-level labeling. To address these challenges in weakly labeled datasets, we propose a novel custom loss function in conjunction with the multi-instance learning (MIL) algorithm. Our approach utilizes the UCF Crime and ShanghaiTech datasets for anomaly detection. The UCF Crime dataset includes labeled videos depicting a range of incidents such as explosions, assaults, and burglaries, while the ShanghaiTech dataset is one of the largest anomaly datasets, with over 400 video clips featuring three different scenes and 130 abnormal events. We generated pseudo labels for videos using the MIL technique to detect frame-level anomalies from video-level annotations, and to train the network to distinguish between normal and abnormal classes. We conducted extensive experiments on the UCF Crime dataset using C3D and I3D features to test our model's performance. For the ShanghaiTech dataset, we used I3D features for training and testing. Our results show that with I3D features, we achieve an 84.6% frame-level AUC score for the UCF Crime dataset and a 92.27% frame-level AUC score for the ShanghaiTech dataset, which are comparable to other methods used for similar datasets.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-World Anomaly Detection in Video Using Spatio-Temporal Features Analysis for Weakly Labelled Data with Auto Label Generation\",\"authors\":\"Rikin J. Nayak, Jitendra P. Chaudhari\",\"doi\":\"10.32985/ijeces.14.5.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting anomalies in videos is a complex task due to diverse content, noisy labeling, and a lack of frame-level labeling. To address these challenges in weakly labeled datasets, we propose a novel custom loss function in conjunction with the multi-instance learning (MIL) algorithm. Our approach utilizes the UCF Crime and ShanghaiTech datasets for anomaly detection. The UCF Crime dataset includes labeled videos depicting a range of incidents such as explosions, assaults, and burglaries, while the ShanghaiTech dataset is one of the largest anomaly datasets, with over 400 video clips featuring three different scenes and 130 abnormal events. We generated pseudo labels for videos using the MIL technique to detect frame-level anomalies from video-level annotations, and to train the network to distinguish between normal and abnormal classes. We conducted extensive experiments on the UCF Crime dataset using C3D and I3D features to test our model's performance. For the ShanghaiTech dataset, we used I3D features for training and testing. Our results show that with I3D features, we achieve an 84.6% frame-level AUC score for the UCF Crime dataset and a 92.27% frame-level AUC score for the ShanghaiTech dataset, which are comparable to other methods used for similar datasets.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.5.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.5.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Real-World Anomaly Detection in Video Using Spatio-Temporal Features Analysis for Weakly Labelled Data with Auto Label Generation
Detecting anomalies in videos is a complex task due to diverse content, noisy labeling, and a lack of frame-level labeling. To address these challenges in weakly labeled datasets, we propose a novel custom loss function in conjunction with the multi-instance learning (MIL) algorithm. Our approach utilizes the UCF Crime and ShanghaiTech datasets for anomaly detection. The UCF Crime dataset includes labeled videos depicting a range of incidents such as explosions, assaults, and burglaries, while the ShanghaiTech dataset is one of the largest anomaly datasets, with over 400 video clips featuring three different scenes and 130 abnormal events. We generated pseudo labels for videos using the MIL technique to detect frame-level anomalies from video-level annotations, and to train the network to distinguish between normal and abnormal classes. We conducted extensive experiments on the UCF Crime dataset using C3D and I3D features to test our model's performance. For the ShanghaiTech dataset, we used I3D features for training and testing. Our results show that with I3D features, we achieve an 84.6% frame-level AUC score for the UCF Crime dataset and a 92.27% frame-level AUC score for the ShanghaiTech dataset, which are comparable to other methods used for similar datasets.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.