基于自动标签生成的弱标记数据时空特征分析的视频真实世界异常检测

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-06-05 DOI:10.32985/ijeces.14.5.8
Rikin J. Nayak, Jitendra P. Chaudhari
{"title":"基于自动标签生成的弱标记数据时空特征分析的视频真实世界异常检测","authors":"Rikin J. Nayak, Jitendra P. Chaudhari","doi":"10.32985/ijeces.14.5.8","DOIUrl":null,"url":null,"abstract":"Detecting anomalies in videos is a complex task due to diverse content, noisy labeling, and a lack of frame-level labeling. To address these challenges in weakly labeled datasets, we propose a novel custom loss function in conjunction with the multi-instance learning (MIL) algorithm. Our approach utilizes the UCF Crime and ShanghaiTech datasets for anomaly detection. The UCF Crime dataset includes labeled videos depicting a range of incidents such as explosions, assaults, and burglaries, while the ShanghaiTech dataset is one of the largest anomaly datasets, with over 400 video clips featuring three different scenes and 130 abnormal events. We generated pseudo labels for videos using the MIL technique to detect frame-level anomalies from video-level annotations, and to train the network to distinguish between normal and abnormal classes. We conducted extensive experiments on the UCF Crime dataset using C3D and I3D features to test our model's performance. For the ShanghaiTech dataset, we used I3D features for training and testing. Our results show that with I3D features, we achieve an 84.6% frame-level AUC score for the UCF Crime dataset and a 92.27% frame-level AUC score for the ShanghaiTech dataset, which are comparable to other methods used for similar datasets.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-World Anomaly Detection in Video Using Spatio-Temporal Features Analysis for Weakly Labelled Data with Auto Label Generation\",\"authors\":\"Rikin J. Nayak, Jitendra P. Chaudhari\",\"doi\":\"10.32985/ijeces.14.5.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting anomalies in videos is a complex task due to diverse content, noisy labeling, and a lack of frame-level labeling. To address these challenges in weakly labeled datasets, we propose a novel custom loss function in conjunction with the multi-instance learning (MIL) algorithm. Our approach utilizes the UCF Crime and ShanghaiTech datasets for anomaly detection. The UCF Crime dataset includes labeled videos depicting a range of incidents such as explosions, assaults, and burglaries, while the ShanghaiTech dataset is one of the largest anomaly datasets, with over 400 video clips featuring three different scenes and 130 abnormal events. We generated pseudo labels for videos using the MIL technique to detect frame-level anomalies from video-level annotations, and to train the network to distinguish between normal and abnormal classes. We conducted extensive experiments on the UCF Crime dataset using C3D and I3D features to test our model's performance. For the ShanghaiTech dataset, we used I3D features for training and testing. Our results show that with I3D features, we achieve an 84.6% frame-level AUC score for the UCF Crime dataset and a 92.27% frame-level AUC score for the ShanghaiTech dataset, which are comparable to other methods used for similar datasets.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.5.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.5.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

检测视频中的异常是一项复杂的任务,因为内容多样,有噪声标记,缺乏帧级标记。为了解决弱标记数据集中的这些挑战,我们提出了一种结合多实例学习(MIL)算法的新型自定义损失函数。我们的方法利用UCF Crime和ShanghaiTech数据集进行异常检测。UCF犯罪数据集包括描述爆炸、袭击和入室盗窃等一系列事件的标记视频,而上海科技数据集是最大的异常数据集之一,拥有超过400个视频片段,其中包含三个不同的场景和130个异常事件。我们使用MIL技术为视频生成伪标签,从视频级注释中检测帧级异常,并训练网络区分正常和异常类。我们在UCF犯罪数据集上进行了广泛的实验,使用C3D和I3D特征来测试我们的模型的性能。对于ShanghaiTech数据集,我们使用I3D特征进行训练和测试。我们的研究结果表明,使用I3D特征,我们为UCF犯罪数据集实现了84.6%的帧级AUC得分,为上海科技数据集实现了92.27%的帧级AUC得分,这与用于类似数据集的其他方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-World Anomaly Detection in Video Using Spatio-Temporal Features Analysis for Weakly Labelled Data with Auto Label Generation
Detecting anomalies in videos is a complex task due to diverse content, noisy labeling, and a lack of frame-level labeling. To address these challenges in weakly labeled datasets, we propose a novel custom loss function in conjunction with the multi-instance learning (MIL) algorithm. Our approach utilizes the UCF Crime and ShanghaiTech datasets for anomaly detection. The UCF Crime dataset includes labeled videos depicting a range of incidents such as explosions, assaults, and burglaries, while the ShanghaiTech dataset is one of the largest anomaly datasets, with over 400 video clips featuring three different scenes and 130 abnormal events. We generated pseudo labels for videos using the MIL technique to detect frame-level anomalies from video-level annotations, and to train the network to distinguish between normal and abnormal classes. We conducted extensive experiments on the UCF Crime dataset using C3D and I3D features to test our model's performance. For the ShanghaiTech dataset, we used I3D features for training and testing. Our results show that with I3D features, we achieve an 84.6% frame-level AUC score for the UCF Crime dataset and a 92.27% frame-level AUC score for the ShanghaiTech dataset, which are comparable to other methods used for similar datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1