啮齿类动物实验性创伤性脑损伤模型

Q4 Biochemistry, Genetics and Molecular Biology Journal of Cellular Neuroscience and Oxidative Stress Pub Date : 2019-06-21 DOI:10.37212/JCNOS.584693
Özgür Öcal
{"title":"啮齿类动物实验性创伤性脑损伤模型","authors":"Özgür Öcal","doi":"10.37212/JCNOS.584693","DOIUrl":null,"url":null,"abstract":"Several accidents such as sport and traffic may induce head trauma for inducing mild traumatic brain injuries. Then the mild traumatic brain injuries result in primary and secondary brain injuries for resulting neurodegenerative disorders. Investigation of the traumatic brain injuries in the subject are difficult due to ethical restrictions. In addition, results of postmortem analyses of mild traumatic brain injuries are not valuable for clarifying the etiology of the mild traumatic brain injuries. Therefore, the animal models have great importance for the clarifying etiology of the mild traumatic brain injuries. Today, there are several animal models of mild traumatic brain injuries such as models of Marmarou, Feeney and Maryland (Marmarou et al. 1994; Hiskens et al. 2019). However, they are severe and acute models instead of the mild traumatic brain injuries. Recently, Dr. Mehmet Bilgen from USA discovered a valuable mechanical technique for the injuries (Bilgen, 2005). This presentation, I aimed to examine the literature for variables included in these animal models. Present data on the experimental traumatic brain injury suggested that appropriate animal models can assist in understanding the pathophysiological outcomes of patients with traumatic brain injury. The animal models could be used for discovering new therapies in the treatment of traumatic brain injuries.","PeriodicalId":37782,"journal":{"name":"Journal of Cellular Neuroscience and Oxidative Stress","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental traumatic brain injury models in rodents\",\"authors\":\"Özgür Öcal\",\"doi\":\"10.37212/JCNOS.584693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several accidents such as sport and traffic may induce head trauma for inducing mild traumatic brain injuries. Then the mild traumatic brain injuries result in primary and secondary brain injuries for resulting neurodegenerative disorders. Investigation of the traumatic brain injuries in the subject are difficult due to ethical restrictions. In addition, results of postmortem analyses of mild traumatic brain injuries are not valuable for clarifying the etiology of the mild traumatic brain injuries. Therefore, the animal models have great importance for the clarifying etiology of the mild traumatic brain injuries. Today, there are several animal models of mild traumatic brain injuries such as models of Marmarou, Feeney and Maryland (Marmarou et al. 1994; Hiskens et al. 2019). However, they are severe and acute models instead of the mild traumatic brain injuries. Recently, Dr. Mehmet Bilgen from USA discovered a valuable mechanical technique for the injuries (Bilgen, 2005). This presentation, I aimed to examine the literature for variables included in these animal models. Present data on the experimental traumatic brain injury suggested that appropriate animal models can assist in understanding the pathophysiological outcomes of patients with traumatic brain injury. The animal models could be used for discovering new therapies in the treatment of traumatic brain injuries.\",\"PeriodicalId\":37782,\"journal\":{\"name\":\"Journal of Cellular Neuroscience and Oxidative Stress\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Neuroscience and Oxidative Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37212/JCNOS.584693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Neuroscience and Oxidative Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37212/JCNOS.584693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

体育、交通等几种事故可诱发头部外伤,引起轻度外伤性脑损伤。然后轻度创伤性脑损伤导致原发性和继发性脑损伤,从而导致神经退行性疾病。由于伦理的限制,对该学科的外伤性脑损伤的调查是困难的。此外,对轻度创伤性脑损伤的死后分析结果对明确轻度创伤性脑损伤的病因没有价值。因此,动物模型的建立对阐明轻度外伤性脑损伤的病因具有重要意义。目前,有几种轻度创伤性脑损伤动物模型,如Marmarou, Feeney和Maryland模型(Marmarou et al. 1994;Hiskens et al. 2019)。然而,它们是严重和急性的模型,而不是轻度的创伤性脑损伤。最近,来自美国的Mehmet Bilgen博士发现了一种治疗损伤的有价值的机械技术(Bilgen, 2005)。这次演讲,我的目的是检查这些动物模型中包含的变量的文献。目前关于实验性创伤性脑损伤的数据表明,适当的动物模型有助于了解创伤性脑损伤患者的病理生理结局。该动物模型可用于探索创伤性脑损伤治疗的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental traumatic brain injury models in rodents
Several accidents such as sport and traffic may induce head trauma for inducing mild traumatic brain injuries. Then the mild traumatic brain injuries result in primary and secondary brain injuries for resulting neurodegenerative disorders. Investigation of the traumatic brain injuries in the subject are difficult due to ethical restrictions. In addition, results of postmortem analyses of mild traumatic brain injuries are not valuable for clarifying the etiology of the mild traumatic brain injuries. Therefore, the animal models have great importance for the clarifying etiology of the mild traumatic brain injuries. Today, there are several animal models of mild traumatic brain injuries such as models of Marmarou, Feeney and Maryland (Marmarou et al. 1994; Hiskens et al. 2019). However, they are severe and acute models instead of the mild traumatic brain injuries. Recently, Dr. Mehmet Bilgen from USA discovered a valuable mechanical technique for the injuries (Bilgen, 2005). This presentation, I aimed to examine the literature for variables included in these animal models. Present data on the experimental traumatic brain injury suggested that appropriate animal models can assist in understanding the pathophysiological outcomes of patients with traumatic brain injury. The animal models could be used for discovering new therapies in the treatment of traumatic brain injuries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cellular Neuroscience and Oxidative Stress
Journal of Cellular Neuroscience and Oxidative Stress Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.10
自引率
0.00%
发文量
8
期刊介绍: Journal of Cellular Neuroscience and Oxidative Stress isan online journal that publishes original research articles, reviews and short reviews on themolecular basisofbiophysical,physiological and pharmacological processes thatregulate cellular function, and the control or alteration of these processesby theaction of receptors, neurotransmitters, second messengers, cation, anions,drugsor disease. Areas of particular interest are four topics. They are; 1. Ion Channels (Na+-K+Channels, Cl– channels, Ca2+channels, ADP-Ribose and metabolism of NAD+,Patch-Clamp applications) 2. Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals) 3. Interaction Between Oxidative Stress and Ion Channels in Neuroscience (Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD+ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson’s and Alzheimer’s diseases) 4. Gene and Oxidative Stress (Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)
期刊最新文献
Circadian rhythms of antioxidant enzymes activity, clock, and inflammation factors are disrupted in the prefrontal cortex of aged rats. Potential targets for therapeutic strategies for a healthy aging. Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice Protective effect of N-acetylcysteine on hippocampal ferroptosis in an experimental obesity model Regulatory role of phospholipase A2 inhibitor in oxidative stress and inflammation induced by an experimental mouse migraine model Fasting alters p75NTR and AgRP mRNA expression in rat olfactory bulb and hippocampus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1