机器学习的投资回报:跨越学术与商业之间的鸿沟

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Foundations of Computing and Decision Sciences Pub Date : 2020-12-01 DOI:10.2478/fcds-2020-0015
Jan Mizgajski, Adrian Szymczak, M. Morzy, Łukasz Augustyniak, Piotr Szymański, Piotr Żelasko
{"title":"机器学习的投资回报:跨越学术与商业之间的鸿沟","authors":"Jan Mizgajski, Adrian Szymczak, M. Morzy, Łukasz Augustyniak, Piotr Szymański, Piotr Żelasko","doi":"10.2478/fcds-2020-0015","DOIUrl":null,"url":null,"abstract":"Abstract Academia remains the central place of machine learning education. While academic culture is the predominant factor influencing the way we teach machine learning to students, many practitioners question this culture, claiming the lack of alignment between academic and business environments. Drawing on professional experiences from both sides of the chasm, we describe the main points of contention, in the hope that it will help better align academic syllabi with the expectations towards future machine learning practitioners. We also provide recommendations for teaching of the applied aspects of machine learning.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"45 1","pages":"281 - 304"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Return on Investment in Machine Learning: Crossing the Chasm between Academia and Business\",\"authors\":\"Jan Mizgajski, Adrian Szymczak, M. Morzy, Łukasz Augustyniak, Piotr Szymański, Piotr Żelasko\",\"doi\":\"10.2478/fcds-2020-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Academia remains the central place of machine learning education. While academic culture is the predominant factor influencing the way we teach machine learning to students, many practitioners question this culture, claiming the lack of alignment between academic and business environments. Drawing on professional experiences from both sides of the chasm, we describe the main points of contention, in the hope that it will help better align academic syllabi with the expectations towards future machine learning practitioners. We also provide recommendations for teaching of the applied aspects of machine learning.\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\"45 1\",\"pages\":\"281 - 304\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2020-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2020-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

学术界仍然是机器学习教育的中心。虽然学术文化是影响我们向学生教授机器学习方式的主要因素,但许多从业者质疑这种文化,声称学术环境和商业环境之间缺乏一致性。根据双方的专业经验,我们描述了争论的要点,希望它能帮助更好地将学术大纲与对未来机器学习从业者的期望结合起来。我们还为机器学习的应用方面的教学提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Return on Investment in Machine Learning: Crossing the Chasm between Academia and Business
Abstract Academia remains the central place of machine learning education. While academic culture is the predominant factor influencing the way we teach machine learning to students, many practitioners question this culture, claiming the lack of alignment between academic and business environments. Drawing on professional experiences from both sides of the chasm, we describe the main points of contention, in the hope that it will help better align academic syllabi with the expectations towards future machine learning practitioners. We also provide recommendations for teaching of the applied aspects of machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computing and Decision Sciences
Foundations of Computing and Decision Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.20
自引率
9.10%
发文量
16
审稿时长
29 weeks
期刊最新文献
A DNA Algorithm for Calculating the Maximum Flow of a Network Traceability of Architectural Design Decisions and Software Artifacts: A Systematic Mapping Study Traveling salesman problem parallelization by solving clustered subproblems Towards automated recommendations for drunk driving penalties in Poland - a case study analysis in selected court Designing a Tri-Objective, Sustainable, Closed-Loop, and Multi-Echelon Supply Chain During the COVID-19 and Lockdowns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1