{"title":"脑电信号的熵和分形分析在阿尔茨海默痴呆早期诊断中的应用","authors":"S. Hadiyoso, I. Wijayanto, A. Humairani","doi":"10.18280/ts.400435","DOIUrl":null,"url":null,"abstract":"The rapid progression of diseases in the elderly, such as Alzheimer's Dementia (AD), necessitates effective early detection mechanisms to ensure appropriate healthcare provision. Given the consistently increasing prevalence of AD, the potential for emerging socio-economic challenges is significant. This underlines the importance of developing early detection strategies to mitigate the progression of this disease. Electroencephalograms (EEG) present a promising avenue for the early diagnosis of AD. EEG signals harbor crucial information pertaining to neuronal death triggered by amyloid plaque accumulation, a characteristic feature of AD. Spectral analysis reveals a deceleration in signal activity in AD patients when compared to healthy elderly individuals. However, this method is frequently compromised by low-frequency noise, necessitating the exploration of alternative approaches for analyzing EEG signal features for early AD detection. Considering the complex nature of EEG signals, it is hypothesized that pathological conditions, such as AD, may induce alterations in signal complexity. In this study, an early detection model for AD was simulated utilizing an approach that focused on EEG signal complexity. Complexity analysis, incorporating Spectral Entropy (SpecEn) and fractal dimensions, was calculated across 19 EEG channels from a total of 34 subjects (16 normal and 18 with Mild Cognitive Impairment (MCI)). Performance validation of the proposed method was achieved through Linear Discriminant Analysis (LDA), yielding an accuracy of 82.4%, specificity of 77.8%, and sensitivity of 87.5%. The findings from this study suggest that EEG analysis can serve as a reliable tool for the early detection of AD.","PeriodicalId":49430,"journal":{"name":"Traitement Du Signal","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy and Fractal Analysis of EEG Signals for Early Detection of Alzheimer's Dementia\",\"authors\":\"S. Hadiyoso, I. Wijayanto, A. Humairani\",\"doi\":\"10.18280/ts.400435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid progression of diseases in the elderly, such as Alzheimer's Dementia (AD), necessitates effective early detection mechanisms to ensure appropriate healthcare provision. Given the consistently increasing prevalence of AD, the potential for emerging socio-economic challenges is significant. This underlines the importance of developing early detection strategies to mitigate the progression of this disease. Electroencephalograms (EEG) present a promising avenue for the early diagnosis of AD. EEG signals harbor crucial information pertaining to neuronal death triggered by amyloid plaque accumulation, a characteristic feature of AD. Spectral analysis reveals a deceleration in signal activity in AD patients when compared to healthy elderly individuals. However, this method is frequently compromised by low-frequency noise, necessitating the exploration of alternative approaches for analyzing EEG signal features for early AD detection. Considering the complex nature of EEG signals, it is hypothesized that pathological conditions, such as AD, may induce alterations in signal complexity. In this study, an early detection model for AD was simulated utilizing an approach that focused on EEG signal complexity. Complexity analysis, incorporating Spectral Entropy (SpecEn) and fractal dimensions, was calculated across 19 EEG channels from a total of 34 subjects (16 normal and 18 with Mild Cognitive Impairment (MCI)). Performance validation of the proposed method was achieved through Linear Discriminant Analysis (LDA), yielding an accuracy of 82.4%, specificity of 77.8%, and sensitivity of 87.5%. The findings from this study suggest that EEG analysis can serve as a reliable tool for the early detection of AD.\",\"PeriodicalId\":49430,\"journal\":{\"name\":\"Traitement Du Signal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traitement Du Signal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18280/ts.400435\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traitement Du Signal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18280/ts.400435","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Entropy and Fractal Analysis of EEG Signals for Early Detection of Alzheimer's Dementia
The rapid progression of diseases in the elderly, such as Alzheimer's Dementia (AD), necessitates effective early detection mechanisms to ensure appropriate healthcare provision. Given the consistently increasing prevalence of AD, the potential for emerging socio-economic challenges is significant. This underlines the importance of developing early detection strategies to mitigate the progression of this disease. Electroencephalograms (EEG) present a promising avenue for the early diagnosis of AD. EEG signals harbor crucial information pertaining to neuronal death triggered by amyloid plaque accumulation, a characteristic feature of AD. Spectral analysis reveals a deceleration in signal activity in AD patients when compared to healthy elderly individuals. However, this method is frequently compromised by low-frequency noise, necessitating the exploration of alternative approaches for analyzing EEG signal features for early AD detection. Considering the complex nature of EEG signals, it is hypothesized that pathological conditions, such as AD, may induce alterations in signal complexity. In this study, an early detection model for AD was simulated utilizing an approach that focused on EEG signal complexity. Complexity analysis, incorporating Spectral Entropy (SpecEn) and fractal dimensions, was calculated across 19 EEG channels from a total of 34 subjects (16 normal and 18 with Mild Cognitive Impairment (MCI)). Performance validation of the proposed method was achieved through Linear Discriminant Analysis (LDA), yielding an accuracy of 82.4%, specificity of 77.8%, and sensitivity of 87.5%. The findings from this study suggest that EEG analysis can serve as a reliable tool for the early detection of AD.
期刊介绍:
The TS provides rapid dissemination of original research in the field of signal processing, imaging and visioning. Since its founding in 1984, the journal has published articles that present original research results of a fundamental, methodological or applied nature. The editorial board welcomes articles on the latest and most promising results of academic research, including both theoretical results and case studies.
The TS welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to:
Signal processing
Imaging
Visioning
Control
Filtering
Compression
Data transmission
Noise reduction
Deconvolution
Prediction
Identification
Classification.