{"title":"基于相似性的空间自回归模型中的推理","authors":"Offer Lieberman, Francesca Rossi","doi":"10.1080/07474938.2023.2205339","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we develop asymptotic theory for a spatial autoregressive (SAR) model where the network structure is defined according to a similarity-based weight matrix, in line with the similarity theory, which in turn has an axiomatic justification. We prove consistency of the quasi-maximum-likelihood estimator and derive its limit distribution. The contribution of this article is two-fold: on one hand, we incorporate a regression component in the data generating process while allowing the similarity structure to accommodate non-ordered data and by estimating explicitly the weight of the similarity, allowing it to be equal to unity. On the other hand, this work complements the literature on SAR models by adopting a data-driven weight matrix which depends on a finite set of parameters that have to be estimated. The spatial parameter, which corresponds to the weight of the similarity structure, is in turn allowed to take values at the boundary of the standard SAR parameter space. In addition, our setup accommodates strong forms of cross-sectional correlation that are normally ruled out in the standard SAR literature. Our framework is general enough to include as special cases also the random walk with a drift model, the local to unit root model (LUR) with a drift and the model for moderate integration with a drift.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"471 - 486"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference in a similarity-based spatial autoregressive model\",\"authors\":\"Offer Lieberman, Francesca Rossi\",\"doi\":\"10.1080/07474938.2023.2205339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we develop asymptotic theory for a spatial autoregressive (SAR) model where the network structure is defined according to a similarity-based weight matrix, in line with the similarity theory, which in turn has an axiomatic justification. We prove consistency of the quasi-maximum-likelihood estimator and derive its limit distribution. The contribution of this article is two-fold: on one hand, we incorporate a regression component in the data generating process while allowing the similarity structure to accommodate non-ordered data and by estimating explicitly the weight of the similarity, allowing it to be equal to unity. On the other hand, this work complements the literature on SAR models by adopting a data-driven weight matrix which depends on a finite set of parameters that have to be estimated. The spatial parameter, which corresponds to the weight of the similarity structure, is in turn allowed to take values at the boundary of the standard SAR parameter space. In addition, our setup accommodates strong forms of cross-sectional correlation that are normally ruled out in the standard SAR literature. Our framework is general enough to include as special cases also the random walk with a drift model, the local to unit root model (LUR) with a drift and the model for moderate integration with a drift.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"42 1\",\"pages\":\"471 - 486\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2023.2205339\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2205339","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Inference in a similarity-based spatial autoregressive model
Abstract In this article, we develop asymptotic theory for a spatial autoregressive (SAR) model where the network structure is defined according to a similarity-based weight matrix, in line with the similarity theory, which in turn has an axiomatic justification. We prove consistency of the quasi-maximum-likelihood estimator and derive its limit distribution. The contribution of this article is two-fold: on one hand, we incorporate a regression component in the data generating process while allowing the similarity structure to accommodate non-ordered data and by estimating explicitly the weight of the similarity, allowing it to be equal to unity. On the other hand, this work complements the literature on SAR models by adopting a data-driven weight matrix which depends on a finite set of parameters that have to be estimated. The spatial parameter, which corresponds to the weight of the similarity structure, is in turn allowed to take values at the boundary of the standard SAR parameter space. In addition, our setup accommodates strong forms of cross-sectional correlation that are normally ruled out in the standard SAR literature. Our framework is general enough to include as special cases also the random walk with a drift model, the local to unit root model (LUR) with a drift and the model for moderate integration with a drift.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.