噪声新闻模型中识别方案的选择

IF 0.7 4区 经济学 Q3 ECONOMICS Studies in Nonlinear Dynamics and Econometrics Pub Date : 2020-10-26 DOI:10.1515/SNDE-2020-0016
J. Chan, Eric Eisenstat, G. Koop
{"title":"噪声新闻模型中识别方案的选择","authors":"J. Chan, Eric Eisenstat, G. Koop","doi":"10.1515/SNDE-2020-0016","DOIUrl":null,"url":null,"abstract":"Abstract This paper is about identifying structural shocks in noisy-news models using structural vector autoregressive moving average (SVARMA) models. We develop a new identification scheme and efficient Bayesian methods for estimating the resulting SVARMA. We discuss how our identification scheme differs from the one which is used in existing theoretical and empirical models. Our main contributions lie in the development of methods for choosing between identification schemes. We estimate specifications with up to 20 variables using US macroeconomic data. We find that our identification scheme is preferred by the data, particularly as the size of the system is increased and that noise shocks generally play a negligible role. However, small models may overstate the importance of noise shocks.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"99 - 136"},"PeriodicalIF":0.7000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/SNDE-2020-0016","citationCount":"2","resultStr":"{\"title\":\"Choosing between identification schemes in noisy-news models\",\"authors\":\"J. Chan, Eric Eisenstat, G. Koop\",\"doi\":\"10.1515/SNDE-2020-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is about identifying structural shocks in noisy-news models using structural vector autoregressive moving average (SVARMA) models. We develop a new identification scheme and efficient Bayesian methods for estimating the resulting SVARMA. We discuss how our identification scheme differs from the one which is used in existing theoretical and empirical models. Our main contributions lie in the development of methods for choosing between identification schemes. We estimate specifications with up to 20 variables using US macroeconomic data. We find that our identification scheme is preferred by the data, particularly as the size of the system is increased and that noise shocks generally play a negligible role. However, small models may overstate the importance of noise shocks.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"26 1\",\"pages\":\"99 - 136\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/SNDE-2020-0016\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/SNDE-2020-0016\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/SNDE-2020-0016","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文使用结构向量自回归移动平均(SVARMA)模型识别噪声新闻模型中的结构冲击。我们开发了一种新的识别方案和有效的贝叶斯方法来估计由此产生的SVARMA。我们讨论了我们的识别方案与现有理论和经验模型中使用的识别方案有何不同。我们的主要贡献在于开发了在识别方案之间进行选择的方法。我们使用美国宏观经济数据估计了多达20个变量的规格。我们发现,我们的识别方案受到数据的青睐,特别是随着系统规模的增加,噪声冲击通常起到可以忽略的作用。然而,小型模型可能夸大了噪声冲击的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Choosing between identification schemes in noisy-news models
Abstract This paper is about identifying structural shocks in noisy-news models using structural vector autoregressive moving average (SVARMA) models. We develop a new identification scheme and efficient Bayesian methods for estimating the resulting SVARMA. We discuss how our identification scheme differs from the one which is used in existing theoretical and empirical models. Our main contributions lie in the development of methods for choosing between identification schemes. We estimate specifications with up to 20 variables using US macroeconomic data. We find that our identification scheme is preferred by the data, particularly as the size of the system is increased and that noise shocks generally play a negligible role. However, small models may overstate the importance of noise shocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
期刊最新文献
Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros Stability in Threshold VAR Models Co-Jumping of Treasury Yield Curve Rates Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1