Savannah Bussières, C. Kinnard, Maxime Clermont, Stéphane Campeau, Daphney Dubé-Richard, Pierre-André Bordeleau, Alexandre Roy
{"title":"使用无人机监测温带洪泛区的水浊度:潜力和挑战","authors":"Savannah Bussières, C. Kinnard, Maxime Clermont, Stéphane Campeau, Daphney Dubé-Richard, Pierre-André Bordeleau, Alexandre Roy","doi":"10.1080/07038992.2022.2096580","DOIUrl":null,"url":null,"abstract":"Abstract The Lake Saint-Pierre (LSP) is a wide (≈300 km2) and shallow (≈3 m) lake created through a widening of the St. Lawrence River. Each spring, freshet makes it the largest floodplain in the province of Quebec. Agricultural practices in the littoral increase the water turbidity, which deteriorate the habitat’s quality of many fish species. However, measuring spatio-temporal turbidity patterns in the LSP floodplain remain difficult because turbidity is highly variable in space and time. This study aims to evaluate the potential to use an Unmanned Aerial Vehicle (UAV) to measure the water turbidity in the LSP’s floodplain. The results show that the UAV can efficiently measure the variation of turbidity in the LSP with a RMSE of 28.22 FNU. We also compared the turbidity retrieved from UAV with those retrieved from Sentinel-2 observations. The results show that the two models are comparable, even if Sentinel-2 yields better results. However, challenges remain when using UAV for turbidity monitoring, such as software limitations for mosaics creation over large water bodies. Nevertheless, the high spatial and temporal information can provide insights into the complex water turbidity patterns which characterize floodplains. The method could help land use management to improve the water quality of these ecosystems.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"565 - 574"},"PeriodicalIF":2.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Monitoring Water Turbidity in a Temperate Floodplain Using UAV: Potential and Challenges\",\"authors\":\"Savannah Bussières, C. Kinnard, Maxime Clermont, Stéphane Campeau, Daphney Dubé-Richard, Pierre-André Bordeleau, Alexandre Roy\",\"doi\":\"10.1080/07038992.2022.2096580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Lake Saint-Pierre (LSP) is a wide (≈300 km2) and shallow (≈3 m) lake created through a widening of the St. Lawrence River. Each spring, freshet makes it the largest floodplain in the province of Quebec. Agricultural practices in the littoral increase the water turbidity, which deteriorate the habitat’s quality of many fish species. However, measuring spatio-temporal turbidity patterns in the LSP floodplain remain difficult because turbidity is highly variable in space and time. This study aims to evaluate the potential to use an Unmanned Aerial Vehicle (UAV) to measure the water turbidity in the LSP’s floodplain. The results show that the UAV can efficiently measure the variation of turbidity in the LSP with a RMSE of 28.22 FNU. We also compared the turbidity retrieved from UAV with those retrieved from Sentinel-2 observations. The results show that the two models are comparable, even if Sentinel-2 yields better results. However, challenges remain when using UAV for turbidity monitoring, such as software limitations for mosaics creation over large water bodies. Nevertheless, the high spatial and temporal information can provide insights into the complex water turbidity patterns which characterize floodplains. The method could help land use management to improve the water quality of these ecosystems.\",\"PeriodicalId\":48843,\"journal\":{\"name\":\"Canadian Journal of Remote Sensing\",\"volume\":\"48 1\",\"pages\":\"565 - 574\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2022.2096580\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2022.2096580","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Monitoring Water Turbidity in a Temperate Floodplain Using UAV: Potential and Challenges
Abstract The Lake Saint-Pierre (LSP) is a wide (≈300 km2) and shallow (≈3 m) lake created through a widening of the St. Lawrence River. Each spring, freshet makes it the largest floodplain in the province of Quebec. Agricultural practices in the littoral increase the water turbidity, which deteriorate the habitat’s quality of many fish species. However, measuring spatio-temporal turbidity patterns in the LSP floodplain remain difficult because turbidity is highly variable in space and time. This study aims to evaluate the potential to use an Unmanned Aerial Vehicle (UAV) to measure the water turbidity in the LSP’s floodplain. The results show that the UAV can efficiently measure the variation of turbidity in the LSP with a RMSE of 28.22 FNU. We also compared the turbidity retrieved from UAV with those retrieved from Sentinel-2 observations. The results show that the two models are comparable, even if Sentinel-2 yields better results. However, challenges remain when using UAV for turbidity monitoring, such as software limitations for mosaics creation over large water bodies. Nevertheless, the high spatial and temporal information can provide insights into the complex water turbidity patterns which characterize floodplains. The method could help land use management to improve the water quality of these ecosystems.
期刊介绍:
Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT).
Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.