基于蜜蜂优化和概率U-RSNet的混合人工智能多类脑肿瘤图像高效分类

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2023-07-21 DOI:10.1142/s0219467824500591
Hariharan Ramamoorthy, Mohan Ramasundaram, S. Raja, Krunal Randive
{"title":"基于蜜蜂优化和概率U-RSNet的混合人工智能多类脑肿瘤图像高效分类","authors":"Hariharan Ramamoorthy, Mohan Ramasundaram, S. Raja, Krunal Randive","doi":"10.1142/s0219467824500591","DOIUrl":null,"url":null,"abstract":"The life of the human beings are considered as the most precious and the average life time has reduced from 75 to 50 age over the past two decades. This reduction of average life time is due to various health hazards namely cancer and many more. The brain tumor ranks among the top ten most common source of demise. Although brain tumors are not the leading cause of death globally, 40% of other cancers (such as breast or lung cancers) metastasize to the brain and become brain tumors. Despite being the gold norm for tumor diagnosis, a biopsy has a number of drawbacks, including inferior sensitivity/specificity, and menace when performing the biopsy, and lengthy wait times for the results. This work employs artificial intelligence integrated with the honey bee optimization (HBO) in detecting the brain tumor with high level of execution in terms of accuracy, recall, precision, F1 score and Jaccard index when compared to the deep learning algorithms of long short term memory networks (LSTM), convolutional neural networks, generative adversarial networks, recurrent neural networks, and deep belief networks. In this work, to enhance the level of prediction, the image segmentation methodology is performed by the probabilistic U-RSNet. This work is analyzed employing the BraTS 2020, BraTS 2021, and OASIS dataset for the vital parameters like accuracy, precision, recall, F1 score, Jaccard index and PPV.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Classification of Multiclass Brain Tumor Image Using Hybrid Artificial Intelligence with Honey Bee Optimization and Probabilistic U-RSNet\",\"authors\":\"Hariharan Ramamoorthy, Mohan Ramasundaram, S. Raja, Krunal Randive\",\"doi\":\"10.1142/s0219467824500591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The life of the human beings are considered as the most precious and the average life time has reduced from 75 to 50 age over the past two decades. This reduction of average life time is due to various health hazards namely cancer and many more. The brain tumor ranks among the top ten most common source of demise. Although brain tumors are not the leading cause of death globally, 40% of other cancers (such as breast or lung cancers) metastasize to the brain and become brain tumors. Despite being the gold norm for tumor diagnosis, a biopsy has a number of drawbacks, including inferior sensitivity/specificity, and menace when performing the biopsy, and lengthy wait times for the results. This work employs artificial intelligence integrated with the honey bee optimization (HBO) in detecting the brain tumor with high level of execution in terms of accuracy, recall, precision, F1 score and Jaccard index when compared to the deep learning algorithms of long short term memory networks (LSTM), convolutional neural networks, generative adversarial networks, recurrent neural networks, and deep belief networks. In this work, to enhance the level of prediction, the image segmentation methodology is performed by the probabilistic U-RSNet. This work is analyzed employing the BraTS 2020, BraTS 2021, and OASIS dataset for the vital parameters like accuracy, precision, recall, F1 score, Jaccard index and PPV.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467824500591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

人类的生命被认为是最宝贵的,在过去的二十年里,平均寿命从75岁减少到50岁。平均寿命的缩短是由于各种健康危害,即癌症等。脑瘤是十大最常见的死亡原因之一。虽然脑瘤不是全球死亡的主要原因,但40%的其他癌症(如乳腺癌或肺癌)转移到大脑并成为脑瘤。尽管活检是肿瘤诊断的金标准,但它有许多缺点,包括灵敏度/特异性较差,活检时存在威胁,等待结果的时间较长。与长短期记忆网络(LSTM)、卷积神经网络、生成对抗网络、循环神经网络和深度信念网络等深度学习算法相比,本研究采用集成了蜜蜂优化(HBO)的人工智能来检测脑肿瘤,在准确率、查全率、精密度、F1分数和Jaccard指数方面具有较高的执行水平。在这项工作中,为了提高预测水平,图像分割方法由概率U-RSNet执行。使用BraTS 2020、BraTS 2021和OASIS数据集对准确性、精密度、召回率、F1分数、Jaccard指数和PPV等重要参数进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Classification of Multiclass Brain Tumor Image Using Hybrid Artificial Intelligence with Honey Bee Optimization and Probabilistic U-RSNet
The life of the human beings are considered as the most precious and the average life time has reduced from 75 to 50 age over the past two decades. This reduction of average life time is due to various health hazards namely cancer and many more. The brain tumor ranks among the top ten most common source of demise. Although brain tumors are not the leading cause of death globally, 40% of other cancers (such as breast or lung cancers) metastasize to the brain and become brain tumors. Despite being the gold norm for tumor diagnosis, a biopsy has a number of drawbacks, including inferior sensitivity/specificity, and menace when performing the biopsy, and lengthy wait times for the results. This work employs artificial intelligence integrated with the honey bee optimization (HBO) in detecting the brain tumor with high level of execution in terms of accuracy, recall, precision, F1 score and Jaccard index when compared to the deep learning algorithms of long short term memory networks (LSTM), convolutional neural networks, generative adversarial networks, recurrent neural networks, and deep belief networks. In this work, to enhance the level of prediction, the image segmentation methodology is performed by the probabilistic U-RSNet. This work is analyzed employing the BraTS 2020, BraTS 2021, and OASIS dataset for the vital parameters like accuracy, precision, recall, F1 score, Jaccard index and PPV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Modified Whale Algorithm and Morley PSO-ML-Based Hyperparameter Optimization for Intrusion Detection A Novel Hybrid Attention-Based Dilated Network for Depression Classification Model from Multimodal Data Using Improved Heuristic Approach An Extensive Review on Lung Cancer Detection Models CMVT: ConVit Transformer Network Recombined with Convolutional Layer Two-Phase Speckle Noise Removal in US Images: Speckle Reducing Improved Anisotropic Diffusion and Optimal Bayes Threshold
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1