增强能量吸收的杂化聚合物复合材料

IF 1.1 4区 工程技术 Q4 POLYMER SCIENCE Polimery Pub Date : 2022-12-27 DOI:10.14314/polimery.2022.11.2
K. Czech, M. Oleksy, Rafał Oliwa, A. Domańska
{"title":"增强能量吸收的杂化聚合物复合材料","authors":"K. Czech, M. Oleksy, Rafał Oliwa, A. Domańska","doi":"10.14314/polimery.2022.11.2","DOIUrl":null,"url":null,"abstract":"This paper presents the influence of the type and structure of reinforcement, on the epoxy resin matrix polymer composites mechanical and ballistic properties. Aramid, basalt, glass fabrics and their hybrid systems were used as reinforcement. Impact strength according to Izod and \"falling arrowhead\", flexural strength and structure of the obtained composites were tested. The specific gravity was also determined. The aramid-glass hybrid composites showed high flexural strength (397 MPa) and Young's modulus (21 GPa). However, aramid-basalt composites had high impact strength (116 kJ/m2) and impact energy absorption (45 J).","PeriodicalId":20319,"journal":{"name":"Polimery","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid polymer composites with enhanced energy absorption\",\"authors\":\"K. Czech, M. Oleksy, Rafał Oliwa, A. Domańska\",\"doi\":\"10.14314/polimery.2022.11.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the influence of the type and structure of reinforcement, on the epoxy resin matrix polymer composites mechanical and ballistic properties. Aramid, basalt, glass fabrics and their hybrid systems were used as reinforcement. Impact strength according to Izod and \\\"falling arrowhead\\\", flexural strength and structure of the obtained composites were tested. The specific gravity was also determined. The aramid-glass hybrid composites showed high flexural strength (397 MPa) and Young's modulus (21 GPa). However, aramid-basalt composites had high impact strength (116 kJ/m2) and impact energy absorption (45 J).\",\"PeriodicalId\":20319,\"journal\":{\"name\":\"Polimery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polimery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.14314/polimery.2022.11.2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14314/polimery.2022.11.2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了增强剂的种类和结构对环氧树脂基聚合物复合材料力学性能和弹道性能的影响。用芳纶、玄武岩、玻璃纤维及其混杂体系作为增强材料。对所得复合材料进行了冲击强度、“落箭头”强度、抗弯强度和结构测试。并测定了其比重。该复合材料具有较高的抗弯强度(397 MPa)和杨氏模量(21 GPa)。而芳纶-玄武岩复合材料具有较高的冲击强度(116 kJ/m2)和冲击吸能(45 J)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid polymer composites with enhanced energy absorption
This paper presents the influence of the type and structure of reinforcement, on the epoxy resin matrix polymer composites mechanical and ballistic properties. Aramid, basalt, glass fabrics and their hybrid systems were used as reinforcement. Impact strength according to Izod and "falling arrowhead", flexural strength and structure of the obtained composites were tested. The specific gravity was also determined. The aramid-glass hybrid composites showed high flexural strength (397 MPa) and Young's modulus (21 GPa). However, aramid-basalt composites had high impact strength (116 kJ/m2) and impact energy absorption (45 J).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polimery
Polimery Materials Science-Polymers and Plastics
CiteScore
2.90
自引率
6.20%
发文量
35
审稿时长
1 months
期刊介绍: The "Polimery" journal, of international circulation, is publishing peerreviewed scientific and technical research papers covering polymer science and technology in the field of polymers, rubbers, chemical fibres and paints. The range of topics covered are raw materials, polymer synthesis, processing and applications of polymers. Apart from scientific and technical research papers the monthly includes technical and commercial information such as reports from fairs and exhibitions as well as home, world and technical news. “Polimery "- an international journal covering the following topics: polymers, rubber, chemical fibres and paints. The Journal is addressed to scientists, managers and engineering staff of universities, Polish Academy of Sciences, R&D institutions, industry, specializing in polymer chemistry, physical chemistry, technology and processing. “Polimery” publishes original, reviewed research, scientific and technology papers in the field of polymer synthesis, analysis, technology and modification, processing, properties, applications and recycling.
期刊最新文献
The effect of natural fillers on the mechanical properties and flammability of low-density polyethylene Rheological properties of polypropylene composites with calcium carbonate under high shear rates Zinc and graphene oxide composites as new protective coatings for oil and gas pipes New intumescent coatings for protection flammable materials interior and outside buildings Synthesis of molecularly printed methyl methacrylate-based polymers for the detection of di(2-ethylhexyl) phthalate and dibutyl phthalate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1