射频腔的分析模型与控制设计

IF 1.9 Q3 ENGINEERING, MECHANICAL Vibration Pub Date : 2023-03-25 DOI:10.3390/vibration6020020
M. Keikha, J. T. Kahnamouei, M. Moallem
{"title":"射频腔的分析模型与控制设计","authors":"M. Keikha, J. T. Kahnamouei, M. Moallem","doi":"10.3390/vibration6020020","DOIUrl":null,"url":null,"abstract":"Reduction or suppression of microphonic interference in radio frequency (RF) cavities, such as those used in Electron Linear Accelerators, is necessary to precisely control accelerating fields. In this paper, we investigate modeling the cavity as a cylindrical shell and present its free vibration analysis along with an appropriate control scheme to suppress vibrations. To this end, we first obtain an analytical mechanical dynamic model of a nine-cell cavity using a modified Fourier-Ritz method that provides a unified solution for cylindrical shell systems with general boundary conditions. The model is then verified using the ANSYS software in terms of a comparison of eigenfrequencies which prove to be identical to the proposed model. We also present an active observer-based vibration control scheme to suppress the dominant mechanical modes of the cavity. The control system performance is investigated using simulations.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radio Frequency Cavity’s Analytical Model and Control Design\",\"authors\":\"M. Keikha, J. T. Kahnamouei, M. Moallem\",\"doi\":\"10.3390/vibration6020020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reduction or suppression of microphonic interference in radio frequency (RF) cavities, such as those used in Electron Linear Accelerators, is necessary to precisely control accelerating fields. In this paper, we investigate modeling the cavity as a cylindrical shell and present its free vibration analysis along with an appropriate control scheme to suppress vibrations. To this end, we first obtain an analytical mechanical dynamic model of a nine-cell cavity using a modified Fourier-Ritz method that provides a unified solution for cylindrical shell systems with general boundary conditions. The model is then verified using the ANSYS software in terms of a comparison of eigenfrequencies which prove to be identical to the proposed model. We also present an active observer-based vibration control scheme to suppress the dominant mechanical modes of the cavity. The control system performance is investigated using simulations.\",\"PeriodicalId\":75301,\"journal\":{\"name\":\"Vibration\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vibration6020020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了精确控制加速场,需要减少或抑制射频(RF)腔中的微声干扰,例如电子线性加速器中使用的微声干涉。在本文中,我们研究了将空腔建模为圆柱壳,并对其自由振动进行了分析,同时提出了一种适当的控制方案来抑制振动。为此,我们首先使用改进的傅立叶-里兹方法获得了九单元腔的力学动力学分析模型,该方法为具有一般边界条件的圆柱壳系统提供了统一的解。然后使用ANSYS软件对该模型进行了验证,并对本征频率进行了比较,结果证明该模型与所提出的模型相同。我们还提出了一种基于主动观测器的振动控制方案,以抑制空腔的主要机械模式。通过仿真研究了控制系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radio Frequency Cavity’s Analytical Model and Control Design
Reduction or suppression of microphonic interference in radio frequency (RF) cavities, such as those used in Electron Linear Accelerators, is necessary to precisely control accelerating fields. In this paper, we investigate modeling the cavity as a cylindrical shell and present its free vibration analysis along with an appropriate control scheme to suppress vibrations. To this end, we first obtain an analytical mechanical dynamic model of a nine-cell cavity using a modified Fourier-Ritz method that provides a unified solution for cylindrical shell systems with general boundary conditions. The model is then verified using the ANSYS software in terms of a comparison of eigenfrequencies which prove to be identical to the proposed model. We also present an active observer-based vibration control scheme to suppress the dominant mechanical modes of the cavity. The control system performance is investigated using simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A Study of Seating Suspension System Vibration Isolation Using a Hybrid Method of an Artificial Neural Network and Response Surface Modelling Evaluating Contact-Less Sensing and Fault Diagnosis Characteristics in Vibrating Thin Cantilever Beams with a MetGlas® 2826MB Ribbon A Testbench for Measuring the Dynamic Force-Displacement Characteristics of Shockmounts Study on Fluid–Structure Interaction of a Camber Morphing Wing Study on Lateral Vibration of Tail Coach for High-Speed Train under Unsteady Aerodynamic Loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1