{"title":"lasso估计和逐步neyman -正交泊松估计的有限样本结果","authors":"D. Drukker, Di Liu","doi":"10.1080/07474938.2022.2091363","DOIUrl":null,"url":null,"abstract":"Abstract High-dimensional models that include many covariates which might potentially affect an outcome are increasingly common. This paper begins by introducing a lasso-based approach and a stepwise-based approach to valid inference for a high-dimensional model. It then discusses several essential extensions to the literature that make the estimators more usable in practice. Finally, it presents Monte Carlo evidence to help applied researchers choose which of several available estimators should be used in practice. The Monte Carlo evidence shows that our extensions to the literature perform well. It also shows that a BIC-stepwise approach performs well for a data-generating process for which the lasso-based approaches and a testing-stepwise approach fail. The Monte Carlo evidence also indicates the BIC-based lasso and plugin-based lasso can produce better inferential results than the ubiquitous CV-based lasso. Easy-to-use Stata commands are available for all the methods that we discuss.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"1047 - 1076"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Finite-sample results for lasso and stepwise Neyman-orthogonal Poisson estimators\",\"authors\":\"D. Drukker, Di Liu\",\"doi\":\"10.1080/07474938.2022.2091363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract High-dimensional models that include many covariates which might potentially affect an outcome are increasingly common. This paper begins by introducing a lasso-based approach and a stepwise-based approach to valid inference for a high-dimensional model. It then discusses several essential extensions to the literature that make the estimators more usable in practice. Finally, it presents Monte Carlo evidence to help applied researchers choose which of several available estimators should be used in practice. The Monte Carlo evidence shows that our extensions to the literature perform well. It also shows that a BIC-stepwise approach performs well for a data-generating process for which the lasso-based approaches and a testing-stepwise approach fail. The Monte Carlo evidence also indicates the BIC-based lasso and plugin-based lasso can produce better inferential results than the ubiquitous CV-based lasso. Easy-to-use Stata commands are available for all the methods that we discuss.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"41 1\",\"pages\":\"1047 - 1076\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2022.2091363\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2091363","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Finite-sample results for lasso and stepwise Neyman-orthogonal Poisson estimators
Abstract High-dimensional models that include many covariates which might potentially affect an outcome are increasingly common. This paper begins by introducing a lasso-based approach and a stepwise-based approach to valid inference for a high-dimensional model. It then discusses several essential extensions to the literature that make the estimators more usable in practice. Finally, it presents Monte Carlo evidence to help applied researchers choose which of several available estimators should be used in practice. The Monte Carlo evidence shows that our extensions to the literature perform well. It also shows that a BIC-stepwise approach performs well for a data-generating process for which the lasso-based approaches and a testing-stepwise approach fail. The Monte Carlo evidence also indicates the BIC-based lasso and plugin-based lasso can produce better inferential results than the ubiquitous CV-based lasso. Easy-to-use Stata commands are available for all the methods that we discuss.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.