Katherin Landines Jiménez, Nayive Nieves Pimiento, Carlos Augusto Toledo Bueno
{"title":"人体股骨受力模拟:有限元分析","authors":"Katherin Landines Jiménez, Nayive Nieves Pimiento, Carlos Augusto Toledo Bueno","doi":"10.14483/2322939x.15575","DOIUrl":null,"url":null,"abstract":"This document analyzes the efforts made to the human femur through a simulation of finite elements in Solidworks, in order to carry out the design of the femur in this study, the average height of the population of Malaysia were used, which is similar to that of the average Colombian population (Table 1.) and for the tests, a material with the same mechanical characteristics was simulated in the program of the human cortical bone, permitting a more approximate visualization of stresses and deformations to which the femur is exposed in the usual state and thus, identify the critical areas in which the probability of fracture or wear is greater, the results of this analysis do not apply For women in a state of pregnancy or people with osteoarthritic diseases. This analysis is important to identify which are the areas that present greater deterioration, considering that the bones lose their property of self-recovery over the years increasing the probability of presenting a fracture, having this information clear the prosthetic studies and medical treatments focused on the femur can be deepened. In this analysis, it can be identified that the male femur has greater resistance to tension and deformation than the female femur and how the femoral head is the most critical area of both the female and male fêmur.","PeriodicalId":33457,"journal":{"name":"Revista Vinculos","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulation of forces applied to the human femur: Analysis of finite elements\",\"authors\":\"Katherin Landines Jiménez, Nayive Nieves Pimiento, Carlos Augusto Toledo Bueno\",\"doi\":\"10.14483/2322939x.15575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This document analyzes the efforts made to the human femur through a simulation of finite elements in Solidworks, in order to carry out the design of the femur in this study, the average height of the population of Malaysia were used, which is similar to that of the average Colombian population (Table 1.) and for the tests, a material with the same mechanical characteristics was simulated in the program of the human cortical bone, permitting a more approximate visualization of stresses and deformations to which the femur is exposed in the usual state and thus, identify the critical areas in which the probability of fracture or wear is greater, the results of this analysis do not apply For women in a state of pregnancy or people with osteoarthritic diseases. This analysis is important to identify which are the areas that present greater deterioration, considering that the bones lose their property of self-recovery over the years increasing the probability of presenting a fracture, having this information clear the prosthetic studies and medical treatments focused on the femur can be deepened. In this analysis, it can be identified that the male femur has greater resistance to tension and deformation than the female femur and how the femoral head is the most critical area of both the female and male fêmur.\",\"PeriodicalId\":33457,\"journal\":{\"name\":\"Revista Vinculos\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Vinculos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14483/2322939x.15575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Vinculos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14483/2322939x.15575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of forces applied to the human femur: Analysis of finite elements
This document analyzes the efforts made to the human femur through a simulation of finite elements in Solidworks, in order to carry out the design of the femur in this study, the average height of the population of Malaysia were used, which is similar to that of the average Colombian population (Table 1.) and for the tests, a material with the same mechanical characteristics was simulated in the program of the human cortical bone, permitting a more approximate visualization of stresses and deformations to which the femur is exposed in the usual state and thus, identify the critical areas in which the probability of fracture or wear is greater, the results of this analysis do not apply For women in a state of pregnancy or people with osteoarthritic diseases. This analysis is important to identify which are the areas that present greater deterioration, considering that the bones lose their property of self-recovery over the years increasing the probability of presenting a fracture, having this information clear the prosthetic studies and medical treatments focused on the femur can be deepened. In this analysis, it can be identified that the male femur has greater resistance to tension and deformation than the female femur and how the femoral head is the most critical area of both the female and male fêmur.