基于agent模拟的COVID-19病例报告数据合成复制与增强

Q2 Computer Science Data Science Journal Pub Date : 2020-11-10 DOI:10.1101/2020.11.07.20227462
N. Popper, M. Zechmeister, D. Brunmeir, C. Rippinger, N. Weibrecht, C. Urach, M. Bicher, G. Schneckenreither, A. Rauber
{"title":"基于agent模拟的COVID-19病例报告数据合成复制与增强","authors":"N. Popper, M. Zechmeister, D. Brunmeir, C. Rippinger, N. Weibrecht, C. Urach, M. Bicher, G. Schneckenreither, A. Rauber","doi":"10.1101/2020.11.07.20227462","DOIUrl":null,"url":null,"abstract":"We generate synthetic data documenting COVID-19 cases in Austria by the means of an agent-based simulation model. The model simulates the transmission of the SARS-CoV-2 virus in a statistical replica of the population and reproduces typical patient pathways on an individual basis while simultaneously integrating historical data on the implementation and expiration of population-wide countermeasures. The resulting data semantically and statistically aligns with an official epidemiological case reporting data set and provides an easily accessible, consistent and augmented alternative. Our synthetic data set provides additional insight into the spread of the epidemic by synthesizing information that cannot be recorded in reality.","PeriodicalId":35375,"journal":{"name":"Data Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Synthetic Reproduction and Augmentation of COVID-19 Case Reporting Data by Agent-Based Simulation\",\"authors\":\"N. Popper, M. Zechmeister, D. Brunmeir, C. Rippinger, N. Weibrecht, C. Urach, M. Bicher, G. Schneckenreither, A. Rauber\",\"doi\":\"10.1101/2020.11.07.20227462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generate synthetic data documenting COVID-19 cases in Austria by the means of an agent-based simulation model. The model simulates the transmission of the SARS-CoV-2 virus in a statistical replica of the population and reproduces typical patient pathways on an individual basis while simultaneously integrating historical data on the implementation and expiration of population-wide countermeasures. The resulting data semantically and statistically aligns with an official epidemiological case reporting data set and provides an easily accessible, consistent and augmented alternative. Our synthetic data set provides additional insight into the spread of the epidemic by synthesizing information that cannot be recorded in reality.\",\"PeriodicalId\":35375,\"journal\":{\"name\":\"Data Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.11.07.20227462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.11.07.20227462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 12

摘要

我们通过基于主体的模拟模型生成了记录奥地利COVID-19病例的合成数据。该模型模拟了SARS-CoV-2病毒在人口统计副本中的传播,并以个体为基础再现了典型的患者路径,同时整合了有关全人口对策实施和到期的历史数据。由此产生的数据在语义和统计上与官方流行病学病例报告数据集一致,并提供易于获取、一致和增强的替代方案。我们的综合数据集通过综合现实中无法记录的信息,进一步了解了这一流行病的传播情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthetic Reproduction and Augmentation of COVID-19 Case Reporting Data by Agent-Based Simulation
We generate synthetic data documenting COVID-19 cases in Austria by the means of an agent-based simulation model. The model simulates the transmission of the SARS-CoV-2 virus in a statistical replica of the population and reproduces typical patient pathways on an individual basis while simultaneously integrating historical data on the implementation and expiration of population-wide countermeasures. The resulting data semantically and statistically aligns with an official epidemiological case reporting data set and provides an easily accessible, consistent and augmented alternative. Our synthetic data set provides additional insight into the spread of the epidemic by synthesizing information that cannot be recorded in reality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Science Journal
Data Science Journal Computer Science-Computer Science (miscellaneous)
CiteScore
5.40
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The Data Science Journal is a peer-reviewed electronic journal publishing papers on the management of data and databases in Science and Technology. Details can be found in the prospectus. The scope of the journal includes descriptions of data systems, their publication on the internet, applications and legal issues. All of the Sciences are covered, including the Physical Sciences, Engineering, the Geosciences and the Biosciences, along with Agriculture and the Medical Science. The journal publishes papers about data and data systems; it does not publish data or data compilations. However it may publish papers about methods of data compilation or analysis.
期刊最新文献
Data on the Margins – Data from LGBTIQ+ Populations in European Social Science Data Archives Insights on Sustainability of Earth Science Data Infrastructure Projects Using OpenBIS as Virtual Research Environment: An ELN-LIMS Open-Source Database Tool as a Framework within the CRC 1411 Design of Particulate Products Umbrella Data Management Plans to Integrate FAIR Data: Lessons From the ISIDORe and BY-COVID Consortia for Pandemic Preparedness The Launch of the <em>Data Science Journal</em>&nbsp;in 2002
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1