一种鲁棒ANN-PID校正器的设计与实现,以改善高穿透光伏太阳能并网

Q3 Energy Journal of Energy Systems Pub Date : 2023-03-31 DOI:10.30521/jes.1053423
D. Gueye, A. Ndiaye, Amadou Diao
{"title":"一种鲁棒ANN-PID校正器的设计与实现,以改善高穿透光伏太阳能并网","authors":"D. Gueye, A. Ndiaye, Amadou Diao","doi":"10.30521/jes.1053423","DOIUrl":null,"url":null,"abstract":"The best quality of PV energy into the grid is now problematic that is why this paper focuses on the design and implementation of a robust Proportional Integral Derivative based on Artificial Neural Network (ANN-PID). This technique used to ensure the regulation of the Boost Converter (BC) output voltage and the Three Phase Inverter (3 PI) output currents of a photovoltaic solar system (PVS) connected to the grid. The mathematical model of the DC bus and the 3-PI is presented. Applications under Matlab/Simulink justify the efficiency of the neural regulator. In comparison with the conventional one, the proposed method presents the best follow-up of the DC link voltage reference and a maximum overshoot of 3.16 %. In addition, despite the long time put in transient mode, the proposed method keeps better robustness and ensures an injection of current of a total harmonic distortion (THD) of 0.96 % against 2.18 % of the classical PID regulator.","PeriodicalId":52308,"journal":{"name":"Journal of Energy Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and implementation of a robust ANN-PID corrector to improve high penetrations photovoltaic solar energy connected to the grid\",\"authors\":\"D. Gueye, A. Ndiaye, Amadou Diao\",\"doi\":\"10.30521/jes.1053423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The best quality of PV energy into the grid is now problematic that is why this paper focuses on the design and implementation of a robust Proportional Integral Derivative based on Artificial Neural Network (ANN-PID). This technique used to ensure the regulation of the Boost Converter (BC) output voltage and the Three Phase Inverter (3 PI) output currents of a photovoltaic solar system (PVS) connected to the grid. The mathematical model of the DC bus and the 3-PI is presented. Applications under Matlab/Simulink justify the efficiency of the neural regulator. In comparison with the conventional one, the proposed method presents the best follow-up of the DC link voltage reference and a maximum overshoot of 3.16 %. In addition, despite the long time put in transient mode, the proposed method keeps better robustness and ensures an injection of current of a total harmonic distortion (THD) of 0.96 % against 2.18 % of the classical PID regulator.\",\"PeriodicalId\":52308,\"journal\":{\"name\":\"Journal of Energy Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30521/jes.1053423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30521/jes.1053423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

进入电网的光伏能量的最佳质量现在是个问题,这就是为什么本文专注于基于人工神经网络(ANN-PID)的鲁棒比例积分导数的设计和实现。该技术用于确保连接到电网的光伏太阳能系统(PVS)的升压转换器(BC)输出电压和三相逆变器(3PI)输出电流的调节。给出了直流母线和3-PI的数学模型。在Matlab/Simulink下的应用证明了神经调节器的有效性。与传统方法相比,所提出的方法呈现出DC链路电压参考的最佳跟随和3.16%的最大过冲。此外,尽管处于瞬态模式的时间很长,但所提出的方法保持了更好的鲁棒性,并确保了总谐波失真(THD)为0.96%的电流注入,而传统PID调节器的总谐波失真为2.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and implementation of a robust ANN-PID corrector to improve high penetrations photovoltaic solar energy connected to the grid
The best quality of PV energy into the grid is now problematic that is why this paper focuses on the design and implementation of a robust Proportional Integral Derivative based on Artificial Neural Network (ANN-PID). This technique used to ensure the regulation of the Boost Converter (BC) output voltage and the Three Phase Inverter (3 PI) output currents of a photovoltaic solar system (PVS) connected to the grid. The mathematical model of the DC bus and the 3-PI is presented. Applications under Matlab/Simulink justify the efficiency of the neural regulator. In comparison with the conventional one, the proposed method presents the best follow-up of the DC link voltage reference and a maximum overshoot of 3.16 %. In addition, despite the long time put in transient mode, the proposed method keeps better robustness and ensures an injection of current of a total harmonic distortion (THD) of 0.96 % against 2.18 % of the classical PID regulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Systems
Journal of Energy Systems Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.60
自引率
0.00%
发文量
29
期刊最新文献
A new capacitive inductive system design for LASER-induced kilotesla magnetic field generation Efficiency analysis of fixed and axis tracking options of photovoltaic systems to be installed in a marina Cost optimization of oil type distribution transformer using multi-objective genetic algorithm Innovative approaches and modified criteria to improve a thermodynamic efficiency of trigeneration plants Identification of Vibration for Balancing in Fehn Pollux Ship with ECO Flettner Rotor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1