{"title":"带传质的非定常MHD混合对流水在球上的流动","authors":"A. Jenifer, P. Saikrishnan, R. Lewis","doi":"10.22055/JACM.2021.35920.2761","DOIUrl":null,"url":null,"abstract":"This paper examines the unsteady magnetohydrodynamic (MHD) mixed convection flow over a sphere combined with variable fluid properties. An implicit finite difference scheme, together with the quasi-linearization, is used to find non-similar solutions for the governing equations. The vanishing skin friction is prevented or at least delayed by enhancing the mixed convection in both the cases of steady and unsteady fluid flow. Both skin friction and heat transfer coefficients are found to be increasing with an increase in time or MHD parameter.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"7 1","pages":"935-943"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Unsteady MHD Mixed Convection Flow of Water over a Sphere with Mass Transfer\",\"authors\":\"A. Jenifer, P. Saikrishnan, R. Lewis\",\"doi\":\"10.22055/JACM.2021.35920.2761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the unsteady magnetohydrodynamic (MHD) mixed convection flow over a sphere combined with variable fluid properties. An implicit finite difference scheme, together with the quasi-linearization, is used to find non-similar solutions for the governing equations. The vanishing skin friction is prevented or at least delayed by enhancing the mixed convection in both the cases of steady and unsteady fluid flow. Both skin friction and heat transfer coefficients are found to be increasing with an increase in time or MHD parameter.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\"7 1\",\"pages\":\"935-943\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22055/JACM.2021.35920.2761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.35920.2761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
Unsteady MHD Mixed Convection Flow of Water over a Sphere with Mass Transfer
This paper examines the unsteady magnetohydrodynamic (MHD) mixed convection flow over a sphere combined with variable fluid properties. An implicit finite difference scheme, together with the quasi-linearization, is used to find non-similar solutions for the governing equations. The vanishing skin friction is prevented or at least delayed by enhancing the mixed convection in both the cases of steady and unsteady fluid flow. Both skin friction and heat transfer coefficients are found to be increasing with an increase in time or MHD parameter.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.