大比例尺在线地图的特征密度比较

M. Peterson
{"title":"大比例尺在线地图的特征密度比较","authors":"M. Peterson","doi":"10.14714/CP97.1707","DOIUrl":null,"url":null,"abstract":"A Comparison of Feature Density for Large Scale Online Maps – Peterson | 23 © by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0. Large-scale maps, such as those provided by Google, Bing, and Mapbox, among others, provide users an important source of information for local environments. Comparing maps from these services helps to evaluate both the quality of the underlying spatial data and the process of rendering the data into a map. The feature and label density of three different mapping services was evaluated by making pairwise comparisons of large-scale maps for a series of random areas across three continents. For North America, it was found that maps from Google had consistently higher feature and label density than those from Bing and Mapbox. Google Maps also held an advantage in Europe, while maps from Bing were the most detailed in sub-Saharan Africa. Maps from Mapbox, which relies exclusively on data from OpenStreetMap, had the lowest feature and label density for all three areas.","PeriodicalId":39760,"journal":{"name":"Journal of the Brazilian Computer Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Comparison of Feature Density for Large Scale Online Maps\",\"authors\":\"M. Peterson\",\"doi\":\"10.14714/CP97.1707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Comparison of Feature Density for Large Scale Online Maps – Peterson | 23 © by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0. Large-scale maps, such as those provided by Google, Bing, and Mapbox, among others, provide users an important source of information for local environments. Comparing maps from these services helps to evaluate both the quality of the underlying spatial data and the process of rendering the data into a map. The feature and label density of three different mapping services was evaluated by making pairwise comparisons of large-scale maps for a series of random areas across three continents. For North America, it was found that maps from Google had consistently higher feature and label density than those from Bing and Mapbox. Google Maps also held an advantage in Europe, while maps from Bing were the most detailed in sub-Saharan Africa. Maps from Mapbox, which relies exclusively on data from OpenStreetMap, had the lowest feature and label density for all three areas.\",\"PeriodicalId\":39760,\"journal\":{\"name\":\"Journal of the Brazilian Computer Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Brazilian Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14714/CP97.1707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14714/CP97.1707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大型在线地图特征密度的比较——Peterson | 23©作者。本作品根据知识共享署名非商业NoDerivatives 4.0国际许可证获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0.大型地图,如谷歌、必应和Mapbox等提供的地图,为用户提供了当地环境的重要信息来源。比较这些服务中的地图有助于评估底层空间数据的质量以及将数据渲染到地图中的过程。通过对三大洲一系列随机区域的大规模地图进行成对比较,评估了三种不同地图服务的特征和标签密度。在北美,人们发现谷歌地图的功能和标签密度一直高于必应和Mapbox地图。谷歌地图在欧洲也占有优势,而必应的地图在撒哈拉以南非洲最为详细。Mapbox的地图完全依赖于OpenStreetMap的数据,在所有三个区域中,它的功能和标签密度最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparison of Feature Density for Large Scale Online Maps
A Comparison of Feature Density for Large Scale Online Maps – Peterson | 23 © by the author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0. Large-scale maps, such as those provided by Google, Bing, and Mapbox, among others, provide users an important source of information for local environments. Comparing maps from these services helps to evaluate both the quality of the underlying spatial data and the process of rendering the data into a map. The feature and label density of three different mapping services was evaluated by making pairwise comparisons of large-scale maps for a series of random areas across three continents. For North America, it was found that maps from Google had consistently higher feature and label density than those from Bing and Mapbox. Google Maps also held an advantage in Europe, while maps from Bing were the most detailed in sub-Saharan Africa. Maps from Mapbox, which relies exclusively on data from OpenStreetMap, had the lowest feature and label density for all three areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Brazilian Computer Society
Journal of the Brazilian Computer Society Computer Science-Computer Science (all)
CiteScore
2.40
自引率
0.00%
发文量
2
期刊介绍: JBCS is a formal quarterly publication of the Brazilian Computer Society. It is a peer-reviewed international journal which aims to serve as a forum to disseminate innovative research in all fields of computer science and related subjects. Theoretical, practical and experimental papers reporting original research contributions are welcome, as well as high quality survey papers. The journal is open to contributions in all computer science topics, computer systems development or in formal and theoretical aspects of computing, as the list of topics below is not exhaustive. Contributions will be considered for publication in JBCS if they have not been published previously and are not under consideration for publication elsewhere.
期刊最新文献
An optimization-based framework for personal scheduling during pandemic events Multiobjective message scheduling for Hybrid Synchronization in Distributed Simulations Promoting Children's Participation in a Participatory Design Process in a Rural School: A new role needed? A Deep Learning Model for the Assessment of the Visual Aesthetics of Mobile User Interfaces Adopting Human-data Interaction Guidelines and Participatory Practices for Supporting Inexperienced Designers in Information Visualization Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1