青藏高原多年冻土带湿地土壤有机碳和氮的垂直分布:对全新世发育和环境变化的启示

IF 3 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Permafrost and Periglacial Processes Pub Date : 2022-05-18 DOI:10.1002/ppp.2146
Qingfeng Wang, H. Jin, Qingbai Wu, Ting-jun Zhang, Ziqiang Yuan, Xiaoying Li, Jiao Ming, Chengsong Yang, R. Serban, Yadong Huang
{"title":"青藏高原多年冻土带湿地土壤有机碳和氮的垂直分布:对全新世发育和环境变化的启示","authors":"Qingfeng Wang, H. Jin, Qingbai Wu, Ting-jun Zhang, Ziqiang Yuan, Xiaoying Li, Jiao Ming, Chengsong Yang, R. Serban, Yadong Huang","doi":"10.1002/ppp.2146","DOIUrl":null,"url":null,"abstract":"Currently, we know little about accumulation of soil carbon and nitrogen in permafrost‐affected wetlands on the Qinghai–Tibet Plateau (QTP). In this study, we analyze the vertical distribution of concentrations, stocks, and apparent accumulation rates of soil organic carbon (SOC) and total nitrogen (TN) in a wetland underlain by ice‐rich permafrost in the Headwater Area of the Yellow River (HAYR) on the northeastern QTP in the context of Holocene environmental change. SOC and TN stocks at depths of 0–216 cm were 80.0 kg C m−2 and 6.7 kg N m−2, respectively. During the past 7.3 kyr, the general regional climate trend in the HAYR was cooling and drying, as indicated by the decline in chemical weathering in the soil profile. Overall, SOC and TN concentrations increased during this period. Meanwhile, an intense period of SOC and TN accumulation occurred at 1,110–720 yr BP, in contrast to much lower apparent accumulation rates of SOC and TN for the other periods during the past 7.3 kyr. This suggests that the accumulation of SOC and TN in permafrost‐affected wetlands was also affected by local environmental factors, such as soil material deposition rate, in addition to climatic controls as exerted mainly by temperature and precipitation. This study may help integrate relevant studies on plateau wetlands into global models and estimates to better simulate and predict interactions between the carbon cycle and climate changes on a global scale.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The vertical distribution of soil organic carbon and nitrogen in a permafrost‐affected wetland on the Qinghai–Tibet Plateau: Implications for Holocene development and environmental change\",\"authors\":\"Qingfeng Wang, H. Jin, Qingbai Wu, Ting-jun Zhang, Ziqiang Yuan, Xiaoying Li, Jiao Ming, Chengsong Yang, R. Serban, Yadong Huang\",\"doi\":\"10.1002/ppp.2146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, we know little about accumulation of soil carbon and nitrogen in permafrost‐affected wetlands on the Qinghai–Tibet Plateau (QTP). In this study, we analyze the vertical distribution of concentrations, stocks, and apparent accumulation rates of soil organic carbon (SOC) and total nitrogen (TN) in a wetland underlain by ice‐rich permafrost in the Headwater Area of the Yellow River (HAYR) on the northeastern QTP in the context of Holocene environmental change. SOC and TN stocks at depths of 0–216 cm were 80.0 kg C m−2 and 6.7 kg N m−2, respectively. During the past 7.3 kyr, the general regional climate trend in the HAYR was cooling and drying, as indicated by the decline in chemical weathering in the soil profile. Overall, SOC and TN concentrations increased during this period. Meanwhile, an intense period of SOC and TN accumulation occurred at 1,110–720 yr BP, in contrast to much lower apparent accumulation rates of SOC and TN for the other periods during the past 7.3 kyr. This suggests that the accumulation of SOC and TN in permafrost‐affected wetlands was also affected by local environmental factors, such as soil material deposition rate, in addition to climatic controls as exerted mainly by temperature and precipitation. This study may help integrate relevant studies on plateau wetlands into global models and estimates to better simulate and predict interactions between the carbon cycle and climate changes on a global scale.\",\"PeriodicalId\":54629,\"journal\":{\"name\":\"Permafrost and Periglacial Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Permafrost and Periglacial Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/ppp.2146\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Permafrost and Periglacial Processes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/ppp.2146","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 6

摘要

目前,我们对青藏高原多年冻土影响湿地的土壤碳氮积累知之甚少。在本研究中,我们分析了全新世环境变化背景下黄河源头富冰多年冻土湿地土壤有机碳(SOC)和总氮(TN)的浓度、储量和表观积累率的垂直分布。0–216深处的SOC和TN储量 cm分别为80.0 kg C m−2和6.7 kg N m−2。在过去的7.3 kyr期间,HAYR的总体区域气候趋势是冷却和干燥,这表明土壤剖面中化学风化的减少。总的来说,SOC和TN浓度在这一时期有所增加。同时,在1110–720时出现了SOC和TN的强烈积累期 yr BP,相比之下,在过去7.3 kyr的其他时期,SOC和TN的表观积累率要低得多。这表明,受永久冻土影响的湿地中SOC和TN的积累也受到当地环境因素的影响,如土壤物质沉积速率,以及主要由温度和降水施加的气候控制。这项研究可能有助于将高原湿地的相关研究纳入全球模型和估计,以更好地模拟和预测全球范围内碳循环与气候变化之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The vertical distribution of soil organic carbon and nitrogen in a permafrost‐affected wetland on the Qinghai–Tibet Plateau: Implications for Holocene development and environmental change
Currently, we know little about accumulation of soil carbon and nitrogen in permafrost‐affected wetlands on the Qinghai–Tibet Plateau (QTP). In this study, we analyze the vertical distribution of concentrations, stocks, and apparent accumulation rates of soil organic carbon (SOC) and total nitrogen (TN) in a wetland underlain by ice‐rich permafrost in the Headwater Area of the Yellow River (HAYR) on the northeastern QTP in the context of Holocene environmental change. SOC and TN stocks at depths of 0–216 cm were 80.0 kg C m−2 and 6.7 kg N m−2, respectively. During the past 7.3 kyr, the general regional climate trend in the HAYR was cooling and drying, as indicated by the decline in chemical weathering in the soil profile. Overall, SOC and TN concentrations increased during this period. Meanwhile, an intense period of SOC and TN accumulation occurred at 1,110–720 yr BP, in contrast to much lower apparent accumulation rates of SOC and TN for the other periods during the past 7.3 kyr. This suggests that the accumulation of SOC and TN in permafrost‐affected wetlands was also affected by local environmental factors, such as soil material deposition rate, in addition to climatic controls as exerted mainly by temperature and precipitation. This study may help integrate relevant studies on plateau wetlands into global models and estimates to better simulate and predict interactions between the carbon cycle and climate changes on a global scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.70
自引率
8.00%
发文量
43
审稿时长
>12 weeks
期刊介绍: Permafrost and Periglacial Processes is an international journal dedicated to the rapid publication of scientific and technical papers concerned with earth surface cryogenic processes, landforms and sediments present in a variety of (Sub) Arctic, Antarctic and High Mountain environments. It provides an efficient vehicle of communication amongst those with an interest in the cold, non-glacial geosciences. The focus is on (1) original research based on geomorphological, hydrological, sedimentological, geotechnical and engineering aspects of these areas and (2) original research carried out upon relict features where the objective has been to reconstruct the nature of the processes and/or palaeoenvironments which gave rise to these features, as opposed to purely stratigraphical considerations. The journal also publishes short communications, reviews, discussions and book reviews. The high scientific standard, interdisciplinary character and worldwide representation of PPP are maintained by regional editorial support and a rigorous refereeing system.
期刊最新文献
Effects of Wildfires on Soil Organic Carbon in Boreal Permafrost Regions: A Review Synchronous Isotopic Curves in Ice Wedges of the Batagay Yedoma: Precision Matching and Similarity Scoring Sensitivity of Permafrost Degradation to Geological and Climatic Conditions A Biogeochemical Study of Greenhouse Gas Formation From Two Ice Complexes of Batagay Megaslump, East Siberia Optically‐Stimulated‐Luminescence Ages and Paleo‐Environmental Implications of Relict Frost Wedges in North–Central Bohemia, Czech Republic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1