由多孔层和离散热源水平分隔的方形通风腔内纳米流体的混合对流换热

Pub Date : 2023-08-02 DOI:10.24425/ather.2023.146560
Hamdi Messaoud, Sahi Adel, Ourrad Ouerdia
{"title":"由多孔层和离散热源水平分隔的方形通风腔内纳米流体的混合对流换热","authors":"Hamdi Messaoud, Sahi Adel, Ourrad Ouerdia","doi":"10.24425/ather.2023.146560","DOIUrl":null,"url":null,"abstract":"Laminar mixed convection heat transfer in a vented square cavity separated by a porous layer filled with different nanofluids (Fe 3 O 4 , Cu, Ag and Al 2 O 3 ) has been investigated numerically. The governing equations of mixed convection flow for a Newtonian nanofluid are assumed to be two-dimensional, steady and laminar. These equations are solved numerically by using the finite volume technique. The effects of significant parameters such as the Reynolds number (10 ≤ Re ≤ 1000), Grashof number (10 3 ≤ Gr ≤ 10 6 ), nanoparticle volume fraction (0 . 1 ≤ φ ≤ 0 . 6), porous layer thickness (0 ≤ γ ≤ 1) and porous layer position (0 . 1 ≤ δ ≤ 0 . 9) are studied. Numerical simulation details are visualized in terms of streamline, isotherm contours, and average Nusselt number along the heated source. It has been shown that variations in Reynolds and Darcy numbers have an impact on the flow pattern and heat transfer within a cavity. For higher Reynolds (Re > 100), Grashof (Gr > 10 5 ) numbers and nanoparticles volume fractions the heat transfer rate is enhanced and it is optimal at lower values of Darcy number (Da = 10 − 5 ). In addition, it is noticed that the porous layer thickness and location have a significant effect on the control of the heat transfer rate inside the cavity. Furthermore, it is worth noticing that Ag nanoparticles presented the largest heated transfer rate compared to other nanoparticles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mixed convection heat transfer of a nanofluid in a square ventilated cavity separated horizontally by a porous layer and discrete heat source\",\"authors\":\"Hamdi Messaoud, Sahi Adel, Ourrad Ouerdia\",\"doi\":\"10.24425/ather.2023.146560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laminar mixed convection heat transfer in a vented square cavity separated by a porous layer filled with different nanofluids (Fe 3 O 4 , Cu, Ag and Al 2 O 3 ) has been investigated numerically. The governing equations of mixed convection flow for a Newtonian nanofluid are assumed to be two-dimensional, steady and laminar. These equations are solved numerically by using the finite volume technique. The effects of significant parameters such as the Reynolds number (10 ≤ Re ≤ 1000), Grashof number (10 3 ≤ Gr ≤ 10 6 ), nanoparticle volume fraction (0 . 1 ≤ φ ≤ 0 . 6), porous layer thickness (0 ≤ γ ≤ 1) and porous layer position (0 . 1 ≤ δ ≤ 0 . 9) are studied. Numerical simulation details are visualized in terms of streamline, isotherm contours, and average Nusselt number along the heated source. It has been shown that variations in Reynolds and Darcy numbers have an impact on the flow pattern and heat transfer within a cavity. For higher Reynolds (Re > 100), Grashof (Gr > 10 5 ) numbers and nanoparticles volume fractions the heat transfer rate is enhanced and it is optimal at lower values of Darcy number (Da = 10 − 5 ). In addition, it is noticed that the porous layer thickness and location have a significant effect on the control of the heat transfer rate inside the cavity. Furthermore, it is worth noticing that Ag nanoparticles presented the largest heated transfer rate compared to other nanoparticles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ather.2023.146560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2023.146560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数值研究了由不同纳米流体(Fe3O4、Cu、Ag和Al2O3)填充的多孔层分隔的方形通风腔中的层流混合对流换热。假设牛顿纳米流体的混合对流控制方程是二维、稳定和层流的。这些方程通过使用有限体积技术进行数值求解。研究了雷诺数(10≤Re≤1000)、Grashof数(103≤Gr≤106)、纳米颗粒体积分数(0.1≤φ≤0.6)、多孔层厚度(0≤γ≤1)和多孔层位置(0.1≤δ≤0.9)等重要参数的影响。数值模拟的细节以流线、等温线轮廓和沿热源的平均努塞尔数的形式可视化。研究表明,雷诺数和达西数的变化会影响空腔内的流动模式和传热。雷诺数(Re>100)、Grashof数(Gr>105)和纳米颗粒体积分数越高,传热率越高,在达西数(Da=10−5)越低时传热率最佳。此外,值得注意的是,多孔层的厚度和位置对空腔内传热速率的控制有着重要影响。此外,值得注意的是,与其他纳米颗粒相比,Ag纳米颗粒呈现出最大的热转移速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Mixed convection heat transfer of a nanofluid in a square ventilated cavity separated horizontally by a porous layer and discrete heat source
Laminar mixed convection heat transfer in a vented square cavity separated by a porous layer filled with different nanofluids (Fe 3 O 4 , Cu, Ag and Al 2 O 3 ) has been investigated numerically. The governing equations of mixed convection flow for a Newtonian nanofluid are assumed to be two-dimensional, steady and laminar. These equations are solved numerically by using the finite volume technique. The effects of significant parameters such as the Reynolds number (10 ≤ Re ≤ 1000), Grashof number (10 3 ≤ Gr ≤ 10 6 ), nanoparticle volume fraction (0 . 1 ≤ φ ≤ 0 . 6), porous layer thickness (0 ≤ γ ≤ 1) and porous layer position (0 . 1 ≤ δ ≤ 0 . 9) are studied. Numerical simulation details are visualized in terms of streamline, isotherm contours, and average Nusselt number along the heated source. It has been shown that variations in Reynolds and Darcy numbers have an impact on the flow pattern and heat transfer within a cavity. For higher Reynolds (Re > 100), Grashof (Gr > 10 5 ) numbers and nanoparticles volume fractions the heat transfer rate is enhanced and it is optimal at lower values of Darcy number (Da = 10 − 5 ). In addition, it is noticed that the porous layer thickness and location have a significant effect on the control of the heat transfer rate inside the cavity. Furthermore, it is worth noticing that Ag nanoparticles presented the largest heated transfer rate compared to other nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1