由点突变引起的螺旋矛盾

Q3 Biochemistry, Genetics and Molecular Biology BMC Structural Biology Pub Date : 2013-05-15 DOI:10.1186/1472-6807-13-9
Nicholus Bhattacharjee, Parbati Biswas
{"title":"由点突变引起的螺旋矛盾","authors":"Nicholus Bhattacharjee,&nbsp;Parbati Biswas","doi":"10.1186/1472-6807-13-9","DOIUrl":null,"url":null,"abstract":"<p>Mutation of amino acid sequences in a protein may have diverse effects on its structure and function. Point mutations of even a single amino acid residue in the helices of the non-redundant database may lead to sequentially identical peptides which adopt different secondary structures in different proteins. However, various physico-chemical factors which govern the formation of these ambivalent helices generated by point mutations of a sequence are not clearly known.</p><p>Sequences generated by point mutations of helices are mapped on to their non-helical counterparts in the SCOP database. The results show that short helices are prone to transform into non-helical conformations upon point mutations. Mutation of amino acid residues by helix breakers preferentially yield non-helical conformations, while mutation with residues of intermediate helix propensity display least preferences for non-helical conformations. Differences in the solvent accessibility of the mutating/mutated residues are found to be a major criteria for these sequences to conform to non-helical conformations. Even with minimal differences in the amino acid distributions of the sequences flanking the helical and non-helical conformations, helix-flanking sequences are found be more solvent accessible.</p><p>All types of mutations from helical to non-helical conformations are investigated. The primary factors attributing such changes in conformation can be: i) type/propensity of the mutating and mutant residues ii) solvent accessibility of the residue at the mutation site iii) context/environment dependence of the flanking sequences. The results from the present study may be used to design <i>de novo</i> proteins via point mutations.</p>","PeriodicalId":51240,"journal":{"name":"BMC Structural Biology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1472-6807-13-9","citationCount":"5","resultStr":"{\"title\":\"Helical ambivalency induced by point mutations\",\"authors\":\"Nicholus Bhattacharjee,&nbsp;Parbati Biswas\",\"doi\":\"10.1186/1472-6807-13-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mutation of amino acid sequences in a protein may have diverse effects on its structure and function. Point mutations of even a single amino acid residue in the helices of the non-redundant database may lead to sequentially identical peptides which adopt different secondary structures in different proteins. However, various physico-chemical factors which govern the formation of these ambivalent helices generated by point mutations of a sequence are not clearly known.</p><p>Sequences generated by point mutations of helices are mapped on to their non-helical counterparts in the SCOP database. The results show that short helices are prone to transform into non-helical conformations upon point mutations. Mutation of amino acid residues by helix breakers preferentially yield non-helical conformations, while mutation with residues of intermediate helix propensity display least preferences for non-helical conformations. Differences in the solvent accessibility of the mutating/mutated residues are found to be a major criteria for these sequences to conform to non-helical conformations. Even with minimal differences in the amino acid distributions of the sequences flanking the helical and non-helical conformations, helix-flanking sequences are found be more solvent accessible.</p><p>All types of mutations from helical to non-helical conformations are investigated. The primary factors attributing such changes in conformation can be: i) type/propensity of the mutating and mutant residues ii) solvent accessibility of the residue at the mutation site iii) context/environment dependence of the flanking sequences. The results from the present study may be used to design <i>de novo</i> proteins via point mutations.</p>\",\"PeriodicalId\":51240,\"journal\":{\"name\":\"BMC Structural Biology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1472-6807-13-9\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Structural Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/1472-6807-13-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/1472-6807-13-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5

摘要

蛋白质中氨基酸序列的突变可能对其结构和功能产生多种影响。即使是非冗余数据库螺旋中单个氨基酸残基的点突变也可能导致序列相同的肽在不同蛋白质中采用不同的二级结构。然而,控制这些由序列点突变产生的矛盾螺旋形成的各种物理化学因素尚不清楚。螺旋点突变产生的序列被映射到SCOP数据库中的非螺旋对应序列上。结果表明,短螺旋在点突变时容易转变为非螺旋构象。螺旋破断体突变的氨基酸残基优先产生非螺旋构象,而具有中间螺旋倾向的氨基酸残基突变对非螺旋构象的偏好最小。突变/突变残基的溶剂可及性差异被发现是这些序列符合非螺旋构象的主要标准。即使螺旋和非螺旋构象两侧序列的氨基酸分布差异很小,螺旋侧链序列也更容易被溶剂吸收。所有类型的突变从螺旋到非螺旋构象的研究。导致这种构象变化的主要因素可能是:i)突变和突变残基的类型/倾向;ii)突变位点残基的溶剂可及性;iii)侧翼序列的背景/环境依赖性。本研究的结果可用于通过点突变设计新蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Helical ambivalency induced by point mutations

Mutation of amino acid sequences in a protein may have diverse effects on its structure and function. Point mutations of even a single amino acid residue in the helices of the non-redundant database may lead to sequentially identical peptides which adopt different secondary structures in different proteins. However, various physico-chemical factors which govern the formation of these ambivalent helices generated by point mutations of a sequence are not clearly known.

Sequences generated by point mutations of helices are mapped on to their non-helical counterparts in the SCOP database. The results show that short helices are prone to transform into non-helical conformations upon point mutations. Mutation of amino acid residues by helix breakers preferentially yield non-helical conformations, while mutation with residues of intermediate helix propensity display least preferences for non-helical conformations. Differences in the solvent accessibility of the mutating/mutated residues are found to be a major criteria for these sequences to conform to non-helical conformations. Even with minimal differences in the amino acid distributions of the sequences flanking the helical and non-helical conformations, helix-flanking sequences are found be more solvent accessible.

All types of mutations from helical to non-helical conformations are investigated. The primary factors attributing such changes in conformation can be: i) type/propensity of the mutating and mutant residues ii) solvent accessibility of the residue at the mutation site iii) context/environment dependence of the flanking sequences. The results from the present study may be used to design de novo proteins via point mutations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: BMC Structural Biology is an open access, peer-reviewed journal that considers articles on investigations into the structure of biological macromolecules, including solving structures, structural and functional analyses, and computational modeling.
期刊最新文献
Characterization of putative proteins encoded by variable ORFs in white spot syndrome virus genome Correction to: Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region Effect of low complexity regions within the PvMSP3α block II on the tertiary structure of the protein and implications to immune escape mechanisms QRNAS: software tool for refinement of nucleic acid structures Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1