智能医学中耳镜图像采集与注释的专家建议

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Intelligent medicine Pub Date : 2022-11-01 DOI:10.1016/j.imed.2022.01.001
Yuexin Cai , Junbo Zeng , Liping Lan , Suijun Chen , Yongkang Ou , Linqi Zeng , Qintai Yang , Peng Li , Yubin Chen , Qi Li , Hongzheng Zhang , Fan Shu , Guoping Chen , Wenben Chen , Yahan Yang , Ruiyang Li , Anqi Yan , Haotian Lin , Yiqing Zheng
{"title":"智能医学中耳镜图像采集与注释的专家建议","authors":"Yuexin Cai ,&nbsp;Junbo Zeng ,&nbsp;Liping Lan ,&nbsp;Suijun Chen ,&nbsp;Yongkang Ou ,&nbsp;Linqi Zeng ,&nbsp;Qintai Yang ,&nbsp;Peng Li ,&nbsp;Yubin Chen ,&nbsp;Qi Li ,&nbsp;Hongzheng Zhang ,&nbsp;Fan Shu ,&nbsp;Guoping Chen ,&nbsp;Wenben Chen ,&nbsp;Yahan Yang ,&nbsp;Ruiyang Li ,&nbsp;Anqi Yan ,&nbsp;Haotian Lin ,&nbsp;Yiqing Zheng","doi":"10.1016/j.imed.2022.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Middle and outer ear diseases are common otological diseases worldwide. Otoscopy and otoendoscopy examinations are essential first steps in the evaluation of patients with otological diseases. Misdiagnosis often occurs when the doctor lacks experience in interpreting the results of otoscopy or otoendoscopy, leading to delays in treatment or complications. Using deep learning to process otoscopy images and developing otoscopic artificial-intelligence-based decision-making systems will become a significant trend in the future. However, the uneven quality of otoscopy images is among the major obstacles to development of such artificial intelligence systems, and no standardized process for data acquisition, and annotation of otoscopy images in intelligent medicine has yet been fully established. The standards for data storage and data management are unified with those of other specialties and are introduced in detail here. This expert recommendation criterion improved and standardized the collection and annotation procedures for otoscopy images and fills the current gap in otologic intelligent medicine; it would thus lay a solid foundation for the standardized collection, storage, and annotation of otoscopy images and the application of training algorithms, and promote the development of automatic diagnosis and treatment for otological diseases. The full text introduced image collection (including patient preparation, equipment standards, and image storage), image annotation standards, and quality control.</p></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"2 4","pages":"Pages 230-234"},"PeriodicalIF":4.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667102622000043/pdfft?md5=268521b464b77c2b7597c161f801b8bb&pid=1-s2.0-S2667102622000043-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Expert recommendations on collection and annotation of otoscopy images for intelligent medicine\",\"authors\":\"Yuexin Cai ,&nbsp;Junbo Zeng ,&nbsp;Liping Lan ,&nbsp;Suijun Chen ,&nbsp;Yongkang Ou ,&nbsp;Linqi Zeng ,&nbsp;Qintai Yang ,&nbsp;Peng Li ,&nbsp;Yubin Chen ,&nbsp;Qi Li ,&nbsp;Hongzheng Zhang ,&nbsp;Fan Shu ,&nbsp;Guoping Chen ,&nbsp;Wenben Chen ,&nbsp;Yahan Yang ,&nbsp;Ruiyang Li ,&nbsp;Anqi Yan ,&nbsp;Haotian Lin ,&nbsp;Yiqing Zheng\",\"doi\":\"10.1016/j.imed.2022.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Middle and outer ear diseases are common otological diseases worldwide. Otoscopy and otoendoscopy examinations are essential first steps in the evaluation of patients with otological diseases. Misdiagnosis often occurs when the doctor lacks experience in interpreting the results of otoscopy or otoendoscopy, leading to delays in treatment or complications. Using deep learning to process otoscopy images and developing otoscopic artificial-intelligence-based decision-making systems will become a significant trend in the future. However, the uneven quality of otoscopy images is among the major obstacles to development of such artificial intelligence systems, and no standardized process for data acquisition, and annotation of otoscopy images in intelligent medicine has yet been fully established. The standards for data storage and data management are unified with those of other specialties and are introduced in detail here. This expert recommendation criterion improved and standardized the collection and annotation procedures for otoscopy images and fills the current gap in otologic intelligent medicine; it would thus lay a solid foundation for the standardized collection, storage, and annotation of otoscopy images and the application of training algorithms, and promote the development of automatic diagnosis and treatment for otological diseases. The full text introduced image collection (including patient preparation, equipment standards, and image storage), image annotation standards, and quality control.</p></div>\",\"PeriodicalId\":73400,\"journal\":{\"name\":\"Intelligent medicine\",\"volume\":\"2 4\",\"pages\":\"Pages 230-234\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667102622000043/pdfft?md5=268521b464b77c2b7597c161f801b8bb&pid=1-s2.0-S2667102622000043-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667102622000043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102622000043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

中外耳疾病是世界范围内常见的耳科疾病。耳镜检查和耳内窥镜检查是评估耳科疾病患者必不可少的第一步。当医生在解释耳镜检查或耳内窥镜检查结果方面缺乏经验时,往往会发生误诊,导致治疗延误或并发症。利用深度学习处理耳镜图像,开发基于耳镜人工智能的决策系统将成为未来的重要趋势。然而,耳镜图像质量参差不齐是此类人工智能系统发展的主要障碍之一,并且没有标准化的数据采集流程,智能医学中耳镜图像的注释尚未完全建立。数据存储和数据管理的标准与其他专业统一,这里详细介绍。该专家推荐标准完善和规范了耳镜图像的采集和标注流程,填补了目前耳科智能医学的空白;从而为耳镜图像的规范化采集、存储、标注和训练算法的应用奠定坚实的基础,促进耳科疾病自动诊疗的发展。全文介绍了图像采集(包括患者准备、设备标准和图像存储)、图像标注标准和质量控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expert recommendations on collection and annotation of otoscopy images for intelligent medicine

Middle and outer ear diseases are common otological diseases worldwide. Otoscopy and otoendoscopy examinations are essential first steps in the evaluation of patients with otological diseases. Misdiagnosis often occurs when the doctor lacks experience in interpreting the results of otoscopy or otoendoscopy, leading to delays in treatment or complications. Using deep learning to process otoscopy images and developing otoscopic artificial-intelligence-based decision-making systems will become a significant trend in the future. However, the uneven quality of otoscopy images is among the major obstacles to development of such artificial intelligence systems, and no standardized process for data acquisition, and annotation of otoscopy images in intelligent medicine has yet been fully established. The standards for data storage and data management are unified with those of other specialties and are introduced in detail here. This expert recommendation criterion improved and standardized the collection and annotation procedures for otoscopy images and fills the current gap in otologic intelligent medicine; it would thus lay a solid foundation for the standardized collection, storage, and annotation of otoscopy images and the application of training algorithms, and promote the development of automatic diagnosis and treatment for otological diseases. The full text introduced image collection (including patient preparation, equipment standards, and image storage), image annotation standards, and quality control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
期刊最新文献
Impact of data balancing a multiclass dataset before the creation of association rules to study bacterial vaginosis Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review Improved neurological diagnoses and treatment strategies via automated human brain tissue segmentation from clinical magnetic resonance imaging Increasing the accuracy and reproducibility of positron emission tomography radiomics for predicting pelvic lymph node metastasis in patients with cervical cancer using 3D local binary pattern-based texture features A clinical decision support system using rough set theory and machine learning for disease prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1