{"title":"量子引力作为一种低能量有效场论","authors":"J. Donoghue","doi":"10.4249/scholarpedia.32997","DOIUrl":null,"url":null,"abstract":"An Effective Field Theory is one which uses only the active degrees of freedom available at some energy. A full quantum field theory treatment is applied. When done properly, the results encode the quantum corrections appropriate to that energy. The perturbative treatment of quantum General Relativity behaves as an effective field theory, and well defined quantum corrections can be calculated. This review discusses effective field theory and its application to general relativity.","PeriodicalId":74760,"journal":{"name":"Scholarpedia journal","volume":"12 1","pages":"32997"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Quantum gravity as a low energy effective field theory\",\"authors\":\"J. Donoghue\",\"doi\":\"10.4249/scholarpedia.32997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Effective Field Theory is one which uses only the active degrees of freedom available at some energy. A full quantum field theory treatment is applied. When done properly, the results encode the quantum corrections appropriate to that energy. The perturbative treatment of quantum General Relativity behaves as an effective field theory, and well defined quantum corrections can be calculated. This review discusses effective field theory and its application to general relativity.\",\"PeriodicalId\":74760,\"journal\":{\"name\":\"Scholarpedia journal\",\"volume\":\"12 1\",\"pages\":\"32997\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scholarpedia journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4249/scholarpedia.32997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarpedia journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4249/scholarpedia.32997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum gravity as a low energy effective field theory
An Effective Field Theory is one which uses only the active degrees of freedom available at some energy. A full quantum field theory treatment is applied. When done properly, the results encode the quantum corrections appropriate to that energy. The perturbative treatment of quantum General Relativity behaves as an effective field theory, and well defined quantum corrections can be calculated. This review discusses effective field theory and its application to general relativity.