A. V. Stepanova, A. V. Samsonov, E. B. Salnikova, S. V. Egorova, Yu. O. Larionova, A. A. Arzamastsev, A. N. Larionov, M. A. Sukhanova, R. V. Veselovskiy
{"title":"科拉半岛大堤作为芬诺斯坎地盾北部太古宙克拉通化的标志","authors":"A. V. Stepanova, A. V. Samsonov, E. B. Salnikova, S. V. Egorova, Yu. O. Larionova, A. A. Arzamastsev, A. N. Larionov, M. A. Sukhanova, R. V. Veselovskiy","doi":"10.1134/S086959112206008X","DOIUrl":null,"url":null,"abstract":"<div><p>The results of geochronological and petrological studies of the largest mafic dyke in the northern part of the Fennoscandian Shield, called the Great Dyke of the Kola Peninsula (GDK), are presented. According to U-Pb D-TIMS baddeleyite dating, the GDK crystallization age is 2680 ± 6 Ma. The age of host granites is 2.75–2.72 Ga (U-Pb, zircon, SHRIMP-II). The dyke has a simple internal structure with no signs of multistage melt injection. It comprises equigranular and plagioclase-porphyritic dolerites and gabbro that are amphibolitized to varying degrees. All rocks are low-Mg (Mg# less than 0.37) with low concentrations of Cr and Ni, and were derived through differentiation of more primitive melts. The analysis of geochemical and Sr-Nd isotopic data suggests that GDK melts could be formed by mixing of two types of mantle melts: depleted asthenospheric melt and enriched melt formed via melting of a lithospheric mantle. The weakly fractionated HREE patterns indicate that primary GDK melts originated at shallow (<60 km) depths outside the garnet stability field. The generation and injection of melts of the Neoarchean GDK occurred immediately after large-scale granitic magmatism and main crustal growth event in the Murmansk Craton and marked the cratonization of the continental lithosphere in the northeastern part of the Fennoscandian Shield.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"591 - 609"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Great Dyke of the Kola Peninsula as a Marker of an Archean Cratonization in the Northern Fennoscandian Shield\",\"authors\":\"A. V. Stepanova, A. V. Samsonov, E. B. Salnikova, S. V. Egorova, Yu. O. Larionova, A. A. Arzamastsev, A. N. Larionov, M. A. Sukhanova, R. V. Veselovskiy\",\"doi\":\"10.1134/S086959112206008X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The results of geochronological and petrological studies of the largest mafic dyke in the northern part of the Fennoscandian Shield, called the Great Dyke of the Kola Peninsula (GDK), are presented. According to U-Pb D-TIMS baddeleyite dating, the GDK crystallization age is 2680 ± 6 Ma. The age of host granites is 2.75–2.72 Ga (U-Pb, zircon, SHRIMP-II). The dyke has a simple internal structure with no signs of multistage melt injection. It comprises equigranular and plagioclase-porphyritic dolerites and gabbro that are amphibolitized to varying degrees. All rocks are low-Mg (Mg# less than 0.37) with low concentrations of Cr and Ni, and were derived through differentiation of more primitive melts. The analysis of geochemical and Sr-Nd isotopic data suggests that GDK melts could be formed by mixing of two types of mantle melts: depleted asthenospheric melt and enriched melt formed via melting of a lithospheric mantle. The weakly fractionated HREE patterns indicate that primary GDK melts originated at shallow (<60 km) depths outside the garnet stability field. The generation and injection of melts of the Neoarchean GDK occurred immediately after large-scale granitic magmatism and main crustal growth event in the Murmansk Craton and marked the cratonization of the continental lithosphere in the northeastern part of the Fennoscandian Shield.</p></div>\",\"PeriodicalId\":20026,\"journal\":{\"name\":\"Petrology\",\"volume\":\"30 6\",\"pages\":\"591 - 609\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S086959112206008X\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S086959112206008X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了芬诺斯坎地盾北部最大的基性堤坝——科拉半岛大堤(GDK)的年代学和岩石学研究结果。根据U-Pb D-TIMS bad - yite测年,GDK的结晶年龄为2680±6 Ma。寄主花岗岩年龄为2.75 ~ 2.72 Ga (U-Pb、锆石、SHRIMP-II)。岩脉内部结构简单,没有多级熔体注入的迹象。由不同程度角闪化的等粒状和斜长状斑岩白云岩和辉长岩组成。所有岩石均为低Mg (Mg# < 0.37),含低浓度的Cr和Ni,由更原始的熔体分异而成。地球化学和Sr-Nd同位素数据分析表明,GDK熔体可能是由两种类型的地幔熔体混合形成的:贫软流圈熔体和由岩石圈地幔熔融形成的富集熔体。弱分馏的ree模式表明初生GDK熔体起源于石榴石稳定场外的浅层(<60 km)深度。新太古代GDK熔体的生成和注入发生在摩尔曼斯克克拉通大规模花岗岩岩浆活动和主要地壳生长事件之后,标志着芬诺斯坎德盾东北部大陆岩石圈的克拉通化。
The Great Dyke of the Kola Peninsula as a Marker of an Archean Cratonization in the Northern Fennoscandian Shield
The results of geochronological and petrological studies of the largest mafic dyke in the northern part of the Fennoscandian Shield, called the Great Dyke of the Kola Peninsula (GDK), are presented. According to U-Pb D-TIMS baddeleyite dating, the GDK crystallization age is 2680 ± 6 Ma. The age of host granites is 2.75–2.72 Ga (U-Pb, zircon, SHRIMP-II). The dyke has a simple internal structure with no signs of multistage melt injection. It comprises equigranular and plagioclase-porphyritic dolerites and gabbro that are amphibolitized to varying degrees. All rocks are low-Mg (Mg# less than 0.37) with low concentrations of Cr and Ni, and were derived through differentiation of more primitive melts. The analysis of geochemical and Sr-Nd isotopic data suggests that GDK melts could be formed by mixing of two types of mantle melts: depleted asthenospheric melt and enriched melt formed via melting of a lithospheric mantle. The weakly fractionated HREE patterns indicate that primary GDK melts originated at shallow (<60 km) depths outside the garnet stability field. The generation and injection of melts of the Neoarchean GDK occurred immediately after large-scale granitic magmatism and main crustal growth event in the Murmansk Craton and marked the cratonization of the continental lithosphere in the northeastern part of the Fennoscandian Shield.
期刊介绍:
Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.