{"title":"生长动力学识别的局部序列精化","authors":"Mikhail Rem Romanovski","doi":"10.1080/17415977.2021.1948025","DOIUrl":null,"url":null,"abstract":"The approach is developed to specify a reconstruction of complicated functions using samples of limited size with invariant properties regarding the desired parameters. The idea is based on solutions to inverse problems, which should identify various representations of unknown parameters of a mathematical model and do so in a series. The sequential solutions to inverse problems ensure the identifiability of desired parameters that belong to an invariant family. The locally sequential refinement restricts local spikes additionally to the general regularization under a scheme of separate matching with observations. A simulation with inverse problems is applied to refine the known features of population dynamics. The reconstruction shows that the parameters of the Verhulst equation should be introduced as oscillatory functions. Based on the novel functional representation of the Verhulst equation parameters, the patterns of the COVID-19 spread and its progression in a given region are determined. The results emphasize the Verhulst equation’s character as a generalized and fruitful model for an object growth simulation.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"2719 - 2756"},"PeriodicalIF":1.1000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2021.1948025","citationCount":"1","resultStr":"{\"title\":\"A locally sequential refinement of the growth dynamics identification\",\"authors\":\"Mikhail Rem Romanovski\",\"doi\":\"10.1080/17415977.2021.1948025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The approach is developed to specify a reconstruction of complicated functions using samples of limited size with invariant properties regarding the desired parameters. The idea is based on solutions to inverse problems, which should identify various representations of unknown parameters of a mathematical model and do so in a series. The sequential solutions to inverse problems ensure the identifiability of desired parameters that belong to an invariant family. The locally sequential refinement restricts local spikes additionally to the general regularization under a scheme of separate matching with observations. A simulation with inverse problems is applied to refine the known features of population dynamics. The reconstruction shows that the parameters of the Verhulst equation should be introduced as oscillatory functions. Based on the novel functional representation of the Verhulst equation parameters, the patterns of the COVID-19 spread and its progression in a given region are determined. The results emphasize the Verhulst equation’s character as a generalized and fruitful model for an object growth simulation.\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"2719 - 2756\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17415977.2021.1948025\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2021.1948025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1948025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A locally sequential refinement of the growth dynamics identification
The approach is developed to specify a reconstruction of complicated functions using samples of limited size with invariant properties regarding the desired parameters. The idea is based on solutions to inverse problems, which should identify various representations of unknown parameters of a mathematical model and do so in a series. The sequential solutions to inverse problems ensure the identifiability of desired parameters that belong to an invariant family. The locally sequential refinement restricts local spikes additionally to the general regularization under a scheme of separate matching with observations. A simulation with inverse problems is applied to refine the known features of population dynamics. The reconstruction shows that the parameters of the Verhulst equation should be introduced as oscillatory functions. Based on the novel functional representation of the Verhulst equation parameters, the patterns of the COVID-19 spread and its progression in a given region are determined. The results emphasize the Verhulst equation’s character as a generalized and fruitful model for an object growth simulation.
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.