广义固定效应和随机效应模型meta分析的精确推断

Sifan Liu, L. Tian, Steve Lee, Min‐ge Xie
{"title":"广义固定效应和随机效应模型meta分析的精确推断","authors":"Sifan Liu, L. Tian, Steve Lee, Min‐ge Xie","doi":"10.1080/24709360.2017.1400714","DOIUrl":null,"url":null,"abstract":"ABSTRACT Meta-analysis with fixed-effects and random-effects models provides a general framework for quantitatively summarizing multiple comparative studies. However, a majority of the conventional methods rely on large-sample approximations to justify their inference, which may be invalid and lead to erroneous conclusions, especially when the number of studies is not large, or sample sizes of the individual studies are small. In this article, we propose a set of ‘exact’ confidence intervals for the overall effect, where the coverage probabilities of the intervals can always be achieved. We start with conventional parametric fixed-effects and random-effects models, and then extend the exact methods beyond the commonly postulated Gaussian assumptions. Efficient numerical algorithms for implementing the proposed methods are developed. We also conduct simulation studies to compare the performance of our proposal to existing methods, indicating our proposed procedures are better in terms of coverage level and robustness. The new proposals are then illustrated with the data from meta-analyses for estimating the efficacy of statins and BCG vaccination.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"2 1","pages":"1 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2017.1400714","citationCount":"10","resultStr":"{\"title\":\"Exact inference on meta-analysis with generalized fixed-effects and random-effects models\",\"authors\":\"Sifan Liu, L. Tian, Steve Lee, Min‐ge Xie\",\"doi\":\"10.1080/24709360.2017.1400714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Meta-analysis with fixed-effects and random-effects models provides a general framework for quantitatively summarizing multiple comparative studies. However, a majority of the conventional methods rely on large-sample approximations to justify their inference, which may be invalid and lead to erroneous conclusions, especially when the number of studies is not large, or sample sizes of the individual studies are small. In this article, we propose a set of ‘exact’ confidence intervals for the overall effect, where the coverage probabilities of the intervals can always be achieved. We start with conventional parametric fixed-effects and random-effects models, and then extend the exact methods beyond the commonly postulated Gaussian assumptions. Efficient numerical algorithms for implementing the proposed methods are developed. We also conduct simulation studies to compare the performance of our proposal to existing methods, indicating our proposed procedures are better in terms of coverage level and robustness. The new proposals are then illustrated with the data from meta-analyses for estimating the efficacy of statins and BCG vaccination.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"2 1\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2017.1400714\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2017.1400714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2017.1400714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 10

摘要

固定效应和随机效应模型的荟萃分析为定量总结多个比较研究提供了一个总体框架。然而,大多数传统方法依赖于大样本近似来证明其推断,这可能是无效的,并导致错误的结论,特别是当研究数量不多或单个研究的样本量较小时。在本文中,我们为整体效果提出了一组“精确”置信区间,其中区间的覆盖概率总是可以实现的。我们从传统的参数固定效应和随机效应模型开始,然后将精确方法扩展到通常假设的高斯假设之外。开发了有效的数值算法来实现所提出的方法。我们还进行了模拟研究,将我们的建议与现有方法的性能进行比较,表明我们提出的程序在覆盖水平和鲁棒性方面更好。这些新建议随后用估计他汀类药物和卡介苗接种效果的荟萃分析数据加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exact inference on meta-analysis with generalized fixed-effects and random-effects models
ABSTRACT Meta-analysis with fixed-effects and random-effects models provides a general framework for quantitatively summarizing multiple comparative studies. However, a majority of the conventional methods rely on large-sample approximations to justify their inference, which may be invalid and lead to erroneous conclusions, especially when the number of studies is not large, or sample sizes of the individual studies are small. In this article, we propose a set of ‘exact’ confidence intervals for the overall effect, where the coverage probabilities of the intervals can always be achieved. We start with conventional parametric fixed-effects and random-effects models, and then extend the exact methods beyond the commonly postulated Gaussian assumptions. Efficient numerical algorithms for implementing the proposed methods are developed. We also conduct simulation studies to compare the performance of our proposal to existing methods, indicating our proposed procedures are better in terms of coverage level and robustness. The new proposals are then illustrated with the data from meta-analyses for estimating the efficacy of statins and BCG vaccination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Adjusting for bias due to measurement error in functional quantile regression models with error-prone functional and scalar covariates. The analysis of Salmonella’s ability to survive in different external environments Notice of duplicate publication: public transportation network scan for rapid surveillance Global Odds Model with Proportional Odds and Trend Odds Applied to Gross and Microscopic Brain Infarcts. Flexible and robust procedure for subgroup inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1