小鼠线粒体复合体I失活状态

IF 16.8 1区 生物学 Nature Structural &Molecular Biology Pub Date : 2018-06-06 DOI:10.2210/PDB6G72/PDB
Ahmed-Noor A. Agip, J. N. Blaza, H. R. Bridges, C. Viscomi, S. Rawson, S. Muench, J. Hirst
{"title":"小鼠线粒体复合体I失活状态","authors":"Ahmed-Noor A. Agip, J. N. Blaza, H. R. Bridges, C. Viscomi, S. Rawson, S. Muench, J. Hirst","doi":"10.2210/PDB6G72/PDB","DOIUrl":null,"url":null,"abstract":"Complex I (NADH:ubiquinone oxidoreductase) uses the reducing potential of NADH to drive protons across the energy-transducing inner membrane and power oxidative phosphorylation in mammalian mitochondria. Recent cryo-EM analyses have produced near-complete models of all 45 subunits in the bovine, ovine and porcine complexes and have identified two states relevant to complex I in ischemia-reperfusion injury. Here, we describe the 3.3-A structure of complex I from mouse heart mitochondria, a biomedically relevant model system, in the 'active' state. We reveal a nucleotide bound in subunit NDUFA10, a nucleoside kinase homolog, and define mechanistically critical elements in the mammalian enzyme. By comparisons with a 3.9-A structure of the 'deactive' state and with known bacterial structures, we identify differences in helical geometry in the membrane domain that occur upon activation or that alter the positions of catalytically important charged residues. Our results demonstrate the capability of cryo-EM analyses to challenge and develop mechanistic models for mammalian complex I.","PeriodicalId":18836,"journal":{"name":"Nature Structural &Molecular Biology","volume":"25 1","pages":"548-556"},"PeriodicalIF":16.8000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Mouse mitochondrial complex I in the deactive state\",\"authors\":\"Ahmed-Noor A. Agip, J. N. Blaza, H. R. Bridges, C. Viscomi, S. Rawson, S. Muench, J. Hirst\",\"doi\":\"10.2210/PDB6G72/PDB\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex I (NADH:ubiquinone oxidoreductase) uses the reducing potential of NADH to drive protons across the energy-transducing inner membrane and power oxidative phosphorylation in mammalian mitochondria. Recent cryo-EM analyses have produced near-complete models of all 45 subunits in the bovine, ovine and porcine complexes and have identified two states relevant to complex I in ischemia-reperfusion injury. Here, we describe the 3.3-A structure of complex I from mouse heart mitochondria, a biomedically relevant model system, in the 'active' state. We reveal a nucleotide bound in subunit NDUFA10, a nucleoside kinase homolog, and define mechanistically critical elements in the mammalian enzyme. By comparisons with a 3.9-A structure of the 'deactive' state and with known bacterial structures, we identify differences in helical geometry in the membrane domain that occur upon activation or that alter the positions of catalytically important charged residues. Our results demonstrate the capability of cryo-EM analyses to challenge and develop mechanistic models for mammalian complex I.\",\"PeriodicalId\":18836,\"journal\":{\"name\":\"Nature Structural &Molecular Biology\",\"volume\":\"25 1\",\"pages\":\"548-556\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2018-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural &Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2210/PDB6G72/PDB\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural &Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2210/PDB6G72/PDB","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

复合物I(NADH:泛醌氧化还原酶)利用NADH的还原电位驱动质子穿过能量转换内膜,并为哺乳动物线粒体中的氧化磷酸化提供动力。最近的冷冻电镜分析已经产生了牛、绵羊和猪复合物中所有45个亚基的近乎完整的模型,并确定了与复合物I在缺血再灌注损伤中相关的两种状态。在这里,我们描述了小鼠心脏线粒体复合物I的3.3-A结构,这是一个生物医学相关的模型系统,处于“活性”状态。我们揭示了一种结合在NDUFA10亚基中的核苷酸,一种核苷激酶同源物,并定义了哺乳动物酶中的机制关键元件。通过与“去活化”状态的3.9-a结构和已知的细菌结构进行比较,我们确定了膜结构域中螺旋几何结构的差异,这些差异发生在活化时或改变催化重要带电残基的位置。我们的结果证明了冷冻电镜分析挑战和开发哺乳动物复合体I机制模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mouse mitochondrial complex I in the deactive state
Complex I (NADH:ubiquinone oxidoreductase) uses the reducing potential of NADH to drive protons across the energy-transducing inner membrane and power oxidative phosphorylation in mammalian mitochondria. Recent cryo-EM analyses have produced near-complete models of all 45 subunits in the bovine, ovine and porcine complexes and have identified two states relevant to complex I in ischemia-reperfusion injury. Here, we describe the 3.3-A structure of complex I from mouse heart mitochondria, a biomedically relevant model system, in the 'active' state. We reveal a nucleotide bound in subunit NDUFA10, a nucleoside kinase homolog, and define mechanistically critical elements in the mammalian enzyme. By comparisons with a 3.9-A structure of the 'deactive' state and with known bacterial structures, we identify differences in helical geometry in the membrane domain that occur upon activation or that alter the positions of catalytically important charged residues. Our results demonstrate the capability of cryo-EM analyses to challenge and develop mechanistic models for mammalian complex I.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Structural &Molecular Biology
Nature Structural &Molecular Biology 生物-生化与分子生物学
自引率
1.80%
发文量
160
期刊介绍: Nature Structural & Molecular Biology is a monthly journal that focuses on the functional and mechanistic understanding of how molecular components in a biological process work together. It serves as an integrated forum for structural and molecular studies. The journal places a strong emphasis on the functional and mechanistic understanding of how molecular components in a biological process work together. Some specific areas of interest include the structure and function of proteins, nucleic acids, and other macromolecules, DNA replication, repair and recombination, transcription, regulation of transcription and translation, protein folding, processing and degradation, signal transduction, and intracellular signaling.
期刊最新文献
The ribosome termination complex remodels release factor RF3 and ejects GDP. Structural basis for Parkinson’s disease-linked LRRK2’s binding to microtubules Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics Higher-order phosphatase–substrate contacts terminate the integrated stress response Structural basis of nucleosome transcription mediated by Chd1 and FACT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1