{"title":"基于超扭曲向列相液晶的反对称边界条件波导模式光调制器","authors":"G. Simonenko","doi":"10.18083/LCAPPL.2021.1.81","DOIUrl":null,"url":null,"abstract":"Using the method of computer simulation, the effect of physical constants of a liquid crystalline (LC) material on integral characteristics of a light modulator was studied. The modulator operated in a waveguide mode in the LC structure with a high twist angle and at antisymmetric boundary conditions of the working cell. It was found that the total response time of the LC modulator is inversely proportional to the square of a control voltage and approaches to a certain constant value when the control voltage tends to infinity. The short total response time of the LC modulator with antisymmetric boundary conditions is presumably conditioned by the absence of a “backflow” in the LC cell when the control voltage is removed and by the fact that only half of the working gap thickness effects the switching dynamics. The optimal set of physical parameters of the LC material was deter-mined, at which the contrast ratio is maximal and the total response time of the modulator is minimal. It was es-tablished that each LC material has its own modulator control mode, and the control voltage value and the method of switching between the “on” and “off” states should be selected based on the physical constants of the LC material and the design parameters of the device.","PeriodicalId":18138,"journal":{"name":"Liquid Crystals and their Application","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light Modulator Based on Nematic Liquid Crystal with Super-Twisted Structure Operating in Waveguide Mode with Antisymmetric Boundary Conditions\",\"authors\":\"G. Simonenko\",\"doi\":\"10.18083/LCAPPL.2021.1.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the method of computer simulation, the effect of physical constants of a liquid crystalline (LC) material on integral characteristics of a light modulator was studied. The modulator operated in a waveguide mode in the LC structure with a high twist angle and at antisymmetric boundary conditions of the working cell. It was found that the total response time of the LC modulator is inversely proportional to the square of a control voltage and approaches to a certain constant value when the control voltage tends to infinity. The short total response time of the LC modulator with antisymmetric boundary conditions is presumably conditioned by the absence of a “backflow” in the LC cell when the control voltage is removed and by the fact that only half of the working gap thickness effects the switching dynamics. The optimal set of physical parameters of the LC material was deter-mined, at which the contrast ratio is maximal and the total response time of the modulator is minimal. It was es-tablished that each LC material has its own modulator control mode, and the control voltage value and the method of switching between the “on” and “off” states should be selected based on the physical constants of the LC material and the design parameters of the device.\",\"PeriodicalId\":18138,\"journal\":{\"name\":\"Liquid Crystals and their Application\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Liquid Crystals and their Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18083/LCAPPL.2021.1.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals and their Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18083/LCAPPL.2021.1.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Light Modulator Based on Nematic Liquid Crystal with Super-Twisted Structure Operating in Waveguide Mode with Antisymmetric Boundary Conditions
Using the method of computer simulation, the effect of physical constants of a liquid crystalline (LC) material on integral characteristics of a light modulator was studied. The modulator operated in a waveguide mode in the LC structure with a high twist angle and at antisymmetric boundary conditions of the working cell. It was found that the total response time of the LC modulator is inversely proportional to the square of a control voltage and approaches to a certain constant value when the control voltage tends to infinity. The short total response time of the LC modulator with antisymmetric boundary conditions is presumably conditioned by the absence of a “backflow” in the LC cell when the control voltage is removed and by the fact that only half of the working gap thickness effects the switching dynamics. The optimal set of physical parameters of the LC material was deter-mined, at which the contrast ratio is maximal and the total response time of the modulator is minimal. It was es-tablished that each LC material has its own modulator control mode, and the control voltage value and the method of switching between the “on” and “off” states should be selected based on the physical constants of the LC material and the design parameters of the device.
期刊介绍:
The Journal presents the following main directions of creation/construction, study and application of self-assembled materials: SYNTHESIS, STRUCTURE, PROPERTIES, MEDICINE, BIOLOGY, NANOTECHNOLOGY, SENSORS, PRACTICAL APPLICATION and INFORMATION. The journal is addressed to researchers, lecturers, university students, engineers. The publisher of the journal is the Nanomaterials Research Institute of "Ivanovo State University".