非线性压电能量采集器:实验输出功率映射

IF 1.9 Q3 ENGINEERING, MECHANICAL Vibration Pub Date : 2022-07-27 DOI:10.3390/vibration5030027
I. Burda
{"title":"非线性压电能量采集器:实验输出功率映射","authors":"I. Burda","doi":"10.3390/vibration5030027","DOIUrl":null,"url":null,"abstract":"In this paper, the output power map of a nonlinear energy harvester (PEH) made of a console beam and the membrane of a resonant vibration speaker is analyzed experimentally. The PEH uses two large piezoelectric patches (PZT-5H) bonded into a parallel bimorph configuration. The nonlinear response of the deformable structure provides a wider bandwidth in which power can be harvested, compensating for the mistuning effect of linear counterparts. The nonlinear response of the proposed PEH is analyzed from the perspective of its electrical performance. The proposed experimental method provides novelty by measuring the effects produced by the nonlinearity of the deformable structure on the output power map. The objective of this analysis is to optimize the size of the PZT patch in relation to the size of the console beam, providing experimental support for the design. The presentation of the most significant experimental results of a nonlinear PEH, followed by experimental mapping of the output power, ensured that the proposed objective was achieved. The accuracy of the experimental results was determined by the high degree of automation in the experimental setup, assisted by advanced data processing.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear Piezoelectric Energy Harvester: Experimental Output Power Mapping\",\"authors\":\"I. Burda\",\"doi\":\"10.3390/vibration5030027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the output power map of a nonlinear energy harvester (PEH) made of a console beam and the membrane of a resonant vibration speaker is analyzed experimentally. The PEH uses two large piezoelectric patches (PZT-5H) bonded into a parallel bimorph configuration. The nonlinear response of the deformable structure provides a wider bandwidth in which power can be harvested, compensating for the mistuning effect of linear counterparts. The nonlinear response of the proposed PEH is analyzed from the perspective of its electrical performance. The proposed experimental method provides novelty by measuring the effects produced by the nonlinearity of the deformable structure on the output power map. The objective of this analysis is to optimize the size of the PZT patch in relation to the size of the console beam, providing experimental support for the design. The presentation of the most significant experimental results of a nonlinear PEH, followed by experimental mapping of the output power, ensured that the proposed objective was achieved. The accuracy of the experimental results was determined by the high degree of automation in the experimental setup, assisted by advanced data processing.\",\"PeriodicalId\":75301,\"journal\":{\"name\":\"Vibration\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vibration5030027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration5030027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

本文通过实验分析了由控制台梁和共振扬声器膜片组成的非线性能量采集器(PEH)的输出功率图。PEH使用两个大的压电片(PZT-5H)结合成平行的双压电片配置。可变形结构的非线性响应提供了更宽的带宽,其中可以获得功率,补偿线性对应物的失谐效应。从电气性能的角度分析了所提出的PEH的非线性响应。所提出的实验方法通过测量可变形结构的非线性对输出功率图的影响提供了新颖性。该分析的目的是优化PZT贴片相对于控制台梁的尺寸,为设计提供实验支持。非线性PEH最重要的实验结果的呈现,以及输出功率的实验映射,确保了所提出的目标的实现。实验结果的准确性取决于实验装置的高度自动化,并辅以先进的数据处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Piezoelectric Energy Harvester: Experimental Output Power Mapping
In this paper, the output power map of a nonlinear energy harvester (PEH) made of a console beam and the membrane of a resonant vibration speaker is analyzed experimentally. The PEH uses two large piezoelectric patches (PZT-5H) bonded into a parallel bimorph configuration. The nonlinear response of the deformable structure provides a wider bandwidth in which power can be harvested, compensating for the mistuning effect of linear counterparts. The nonlinear response of the proposed PEH is analyzed from the perspective of its electrical performance. The proposed experimental method provides novelty by measuring the effects produced by the nonlinearity of the deformable structure on the output power map. The objective of this analysis is to optimize the size of the PZT patch in relation to the size of the console beam, providing experimental support for the design. The presentation of the most significant experimental results of a nonlinear PEH, followed by experimental mapping of the output power, ensured that the proposed objective was achieved. The accuracy of the experimental results was determined by the high degree of automation in the experimental setup, assisted by advanced data processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A Study of Seating Suspension System Vibration Isolation Using a Hybrid Method of an Artificial Neural Network and Response Surface Modelling Evaluating Contact-Less Sensing and Fault Diagnosis Characteristics in Vibrating Thin Cantilever Beams with a MetGlas® 2826MB Ribbon A Testbench for Measuring the Dynamic Force-Displacement Characteristics of Shockmounts Study on Fluid–Structure Interaction of a Camber Morphing Wing Study on Lateral Vibration of Tail Coach for High-Speed Train under Unsteady Aerodynamic Loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1