面向推荐系统中的主题多样性:将主题建模与哈希算法相结合

IF 2.4 3区 管理学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Aslib Journal of Information Management Pub Date : 2023-08-30 DOI:10.1108/ajim-01-2023-0019
Donghui Yang, Yan Wang, Zhaoyang Shi, Huimin Wang
{"title":"面向推荐系统中的主题多样性:将主题建模与哈希算法相结合","authors":"Donghui Yang, Yan Wang, Zhaoyang Shi, Huimin Wang","doi":"10.1108/ajim-01-2023-0019","DOIUrl":null,"url":null,"abstract":"PurposeImproving the diversity of recommendation information has become one of the latest research hotspots to solve information cocoons. Aiming to achieve both high accuracy and diversity of recommender system, a hybrid method has been proposed in this paper. This study aims to discuss the aforementioned method.Design/methodology/approachThis paper integrates latent Dirichlet allocation (LDA) model and locality-sensitive hashing (LSH) algorithm to design topic recommendation system. To measure the effectiveness of the method, this paper builds three-level categories of journal paper abstracts on the Web of Science platform as experimental data.Findings(1) The results illustrate that the diversity of recommended items has been significantly enhanced by leveraging hashing function to overcome information cocoons. (2) Integrating topic model and hashing algorithm, the diversity of recommender systems could be achieved without losing the accuracy of recommender systems in a certain degree of refined topic levels.Originality/valueThe hybrid recommendation algorithm developed in this paper can overcome the dilemma of high accuracy and low diversity. The method could ameliorate the recommendation in business and service industries to address the problems of information overload and information cocoons.","PeriodicalId":53152,"journal":{"name":"Aslib Journal of Information Management","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward topic diversity in recommender systems: integrating topic modeling with a hashing algorithm\",\"authors\":\"Donghui Yang, Yan Wang, Zhaoyang Shi, Huimin Wang\",\"doi\":\"10.1108/ajim-01-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeImproving the diversity of recommendation information has become one of the latest research hotspots to solve information cocoons. Aiming to achieve both high accuracy and diversity of recommender system, a hybrid method has been proposed in this paper. This study aims to discuss the aforementioned method.Design/methodology/approachThis paper integrates latent Dirichlet allocation (LDA) model and locality-sensitive hashing (LSH) algorithm to design topic recommendation system. To measure the effectiveness of the method, this paper builds three-level categories of journal paper abstracts on the Web of Science platform as experimental data.Findings(1) The results illustrate that the diversity of recommended items has been significantly enhanced by leveraging hashing function to overcome information cocoons. (2) Integrating topic model and hashing algorithm, the diversity of recommender systems could be achieved without losing the accuracy of recommender systems in a certain degree of refined topic levels.Originality/valueThe hybrid recommendation algorithm developed in this paper can overcome the dilemma of high accuracy and low diversity. The method could ameliorate the recommendation in business and service industries to address the problems of information overload and information cocoons.\",\"PeriodicalId\":53152,\"journal\":{\"name\":\"Aslib Journal of Information Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aslib Journal of Information Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/ajim-01-2023-0019\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aslib Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/ajim-01-2023-0019","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的提高推荐信息的多样性已成为解决信息茧的最新研究热点之一。为了实现推荐系统的高精度和多样性,本文提出了一种混合方法。本研究旨在探讨上述方法。设计/方法论/方法本文将潜在狄利克雷分配(LDA)模型和局部敏感哈希(LSH)算法相结合来设计主题推荐系统。为了衡量该方法的有效性,本文在Web of Science平台上构建了三类期刊论文摘要作为实验数据。研究结果(1)结果表明,通过利用哈希函数克服信息茧,推荐项目的多样性得到了显著增强。(2) 将主题模型和哈希算法相结合,在一定程度的细化主题级别上,可以在不损失推荐系统准确性的情况下实现推荐系统的多样性。独创性/价值本文开发的混合推荐算法可以克服高精度和低多样性的困境。该方法可以改善商业和服务业的推荐,以解决信息过载和信息茧的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward topic diversity in recommender systems: integrating topic modeling with a hashing algorithm
PurposeImproving the diversity of recommendation information has become one of the latest research hotspots to solve information cocoons. Aiming to achieve both high accuracy and diversity of recommender system, a hybrid method has been proposed in this paper. This study aims to discuss the aforementioned method.Design/methodology/approachThis paper integrates latent Dirichlet allocation (LDA) model and locality-sensitive hashing (LSH) algorithm to design topic recommendation system. To measure the effectiveness of the method, this paper builds three-level categories of journal paper abstracts on the Web of Science platform as experimental data.Findings(1) The results illustrate that the diversity of recommended items has been significantly enhanced by leveraging hashing function to overcome information cocoons. (2) Integrating topic model and hashing algorithm, the diversity of recommender systems could be achieved without losing the accuracy of recommender systems in a certain degree of refined topic levels.Originality/valueThe hybrid recommendation algorithm developed in this paper can overcome the dilemma of high accuracy and low diversity. The method could ameliorate the recommendation in business and service industries to address the problems of information overload and information cocoons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aslib Journal of Information Management
Aslib Journal of Information Management COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
5.30
自引率
19.20%
发文量
79
期刊介绍: Aslib Journal of Information Management covers a broad range of issues in the field, including economic, behavioural, social, ethical, technological, international, business-related, political and management-orientated factors. Contributors are encouraged to spell out the practical implications of their work. Aslib Journal of Information Management Areas of interest include topics such as social media, data protection, search engines, information retrieval, digital libraries, information behaviour, intellectual property and copyright, information industry, digital repositories and information policy and governance.
期刊最新文献
Exploring the impact of team engagement on patient satisfaction: insights from social support and transactive memory system Factors affecting user intention to use social commerce continuously from a habit perspective What decision-making process do mHealth users go through when faced with privacy disclosure behaviors? A dual trade-off perspective Collaborative online shopping: customer satisfaction and the influence of product type, gender and involvement An associative text analyzer to facilitate effectiveness of exploring historical texts for digital humanities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1