{"title":"探讨缓冲液与环糊精配合物之间的相互作用——形成规则包合物或非典型包合物","authors":"Lisa Samuelsen, Rene Holm, Christian Schönbeck","doi":"10.1007/s10847-021-01111-4","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study was for the first time to determine the effect of 11 buffers on a γ-cyclodextrin complex, and use these and previous reported data to systematically explore the effect of buffers on different cyclodextrin complexes, considering differences in cavity size and exterior between the cyclodextrins. The effect of 11 buffers on the binding between γ-cyclodextrin and the bile salt taurochenodeoxycholate was determined using isothermal titration calorimetry, and the stability constant of the complex ranged from 6.1 × 10<sup>4</sup> to 9.0 × 10<sup>4</sup> M<sup>−1</sup>, depending on the buffer species. Three buffers (citric, maleic and 2-morpholinoethane-sulfonic acid) decreased the stability constant of the complex compared to the stability in water, though to a degree that has limited practical relevance. As for other cyclodextrin complexes, the stability constant depended on the buffer species present in solution. The analysis showed that the size of the cyclodextrin cavity, rather than the exterior, was paramount for the effect of carboxylic acid buffers, suggesting formation of regular inclusion complexes between carboxylic acid buffers and cyclodextrins.</p></div>","PeriodicalId":54324,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":"102 1-2","pages":"151 - 158"},"PeriodicalIF":1.7000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring the interactions between buffers and cyclodextrin complexes—formation of regular inclusion or atypical non-inclusion complexes\",\"authors\":\"Lisa Samuelsen, Rene Holm, Christian Schönbeck\",\"doi\":\"10.1007/s10847-021-01111-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this study was for the first time to determine the effect of 11 buffers on a γ-cyclodextrin complex, and use these and previous reported data to systematically explore the effect of buffers on different cyclodextrin complexes, considering differences in cavity size and exterior between the cyclodextrins. The effect of 11 buffers on the binding between γ-cyclodextrin and the bile salt taurochenodeoxycholate was determined using isothermal titration calorimetry, and the stability constant of the complex ranged from 6.1 × 10<sup>4</sup> to 9.0 × 10<sup>4</sup> M<sup>−1</sup>, depending on the buffer species. Three buffers (citric, maleic and 2-morpholinoethane-sulfonic acid) decreased the stability constant of the complex compared to the stability in water, though to a degree that has limited practical relevance. As for other cyclodextrin complexes, the stability constant depended on the buffer species present in solution. The analysis showed that the size of the cyclodextrin cavity, rather than the exterior, was paramount for the effect of carboxylic acid buffers, suggesting formation of regular inclusion complexes between carboxylic acid buffers and cyclodextrins.</p></div>\",\"PeriodicalId\":54324,\"journal\":{\"name\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"volume\":\"102 1-2\",\"pages\":\"151 - 158\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10847-021-01111-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-021-01111-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the interactions between buffers and cyclodextrin complexes—formation of regular inclusion or atypical non-inclusion complexes
The aim of this study was for the first time to determine the effect of 11 buffers on a γ-cyclodextrin complex, and use these and previous reported data to systematically explore the effect of buffers on different cyclodextrin complexes, considering differences in cavity size and exterior between the cyclodextrins. The effect of 11 buffers on the binding between γ-cyclodextrin and the bile salt taurochenodeoxycholate was determined using isothermal titration calorimetry, and the stability constant of the complex ranged from 6.1 × 104 to 9.0 × 104 M−1, depending on the buffer species. Three buffers (citric, maleic and 2-morpholinoethane-sulfonic acid) decreased the stability constant of the complex compared to the stability in water, though to a degree that has limited practical relevance. As for other cyclodextrin complexes, the stability constant depended on the buffer species present in solution. The analysis showed that the size of the cyclodextrin cavity, rather than the exterior, was paramount for the effect of carboxylic acid buffers, suggesting formation of regular inclusion complexes between carboxylic acid buffers and cyclodextrins.
期刊介绍:
The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites.
The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.