随机前沿分析模型的敏感性分析

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2021-02-02 DOI:10.1515/mcma-2021-2083
Kekoura Sakouvogui, Saleem Shaik, C. Doetkott, R. Magel
{"title":"随机前沿分析模型的敏感性分析","authors":"Kekoura Sakouvogui, Saleem Shaik, C. Doetkott, R. Magel","doi":"10.1515/mcma-2021-2083","DOIUrl":null,"url":null,"abstract":"Abstract The efficiency measures of the Stochastic Frontier Analysis (SFA) models are dependent on distributional assumptions of the one-sided error or inefficiency term. Given the intent of earlier researchers in the evaluation of a single inefficiency distribution using Monte Carlo (MC) simulation, much attention has not been paid to the comparative analysis of SFA models. Our paper aims to evaluate the effects of the assumption of the inefficiency distribution and thus compares different SFA model assumptions by conducting a MC simulation. In this paper, we derive the population statistical parameters of truncated normal, half-normal, and exponential inefficiency distributions of SFA models with the objective of having comparable sample mean and sample standard deviation during MC simulation. Thus, MC simulation is conducted to evaluate the statistical properties and robustness of the inefficiency distributions of SFA models and across three different misspecification scenarios, sample sizes, production functions, and input distributions. MC simulation results show that the misspecified truncated normal SFA model provides the smallest mean absolute deviation and mean square error when the true data generating process is a half-normal inefficiency distribution.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"27 1","pages":"71 - 90"},"PeriodicalIF":0.8000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2021-2083","citationCount":"2","resultStr":"{\"title\":\"Sensitivity analysis of stochastic frontier analysis models\",\"authors\":\"Kekoura Sakouvogui, Saleem Shaik, C. Doetkott, R. Magel\",\"doi\":\"10.1515/mcma-2021-2083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The efficiency measures of the Stochastic Frontier Analysis (SFA) models are dependent on distributional assumptions of the one-sided error or inefficiency term. Given the intent of earlier researchers in the evaluation of a single inefficiency distribution using Monte Carlo (MC) simulation, much attention has not been paid to the comparative analysis of SFA models. Our paper aims to evaluate the effects of the assumption of the inefficiency distribution and thus compares different SFA model assumptions by conducting a MC simulation. In this paper, we derive the population statistical parameters of truncated normal, half-normal, and exponential inefficiency distributions of SFA models with the objective of having comparable sample mean and sample standard deviation during MC simulation. Thus, MC simulation is conducted to evaluate the statistical properties and robustness of the inefficiency distributions of SFA models and across three different misspecification scenarios, sample sizes, production functions, and input distributions. MC simulation results show that the misspecified truncated normal SFA model provides the smallest mean absolute deviation and mean square error when the true data generating process is a half-normal inefficiency distribution.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"27 1\",\"pages\":\"71 - 90\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mcma-2021-2083\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2021-2083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

摘要随机前沿分析(SFA)模型的效率测度取决于单边误差或无效项的分布假设。鉴于早期研究人员使用蒙特卡罗(MC)模拟评估单一低效分布的意图,SFA模型的比较分析没有得到太多关注。我们的论文旨在评估低效率分布假设的影响,从而通过进行MC模拟来比较不同的SFA模型假设。在本文中,我们推导了SFA模型的截断正态、半正态和指数低效率分布的总体统计参数,目的是在MC模拟过程中具有可比的样本均值和样本标准差。因此,进行MC模拟以评估SFA模型的低效率分布的统计特性和稳健性,并跨越三种不同的错误指定场景、样本量、生产函数和输入分布。MC仿真结果表明,当真实数据生成过程为半正态低效分布时,指定错误的截断正态SFA模型提供了最小的平均绝对偏差和均方误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitivity analysis of stochastic frontier analysis models
Abstract The efficiency measures of the Stochastic Frontier Analysis (SFA) models are dependent on distributional assumptions of the one-sided error or inefficiency term. Given the intent of earlier researchers in the evaluation of a single inefficiency distribution using Monte Carlo (MC) simulation, much attention has not been paid to the comparative analysis of SFA models. Our paper aims to evaluate the effects of the assumption of the inefficiency distribution and thus compares different SFA model assumptions by conducting a MC simulation. In this paper, we derive the population statistical parameters of truncated normal, half-normal, and exponential inefficiency distributions of SFA models with the objective of having comparable sample mean and sample standard deviation during MC simulation. Thus, MC simulation is conducted to evaluate the statistical properties and robustness of the inefficiency distributions of SFA models and across three different misspecification scenarios, sample sizes, production functions, and input distributions. MC simulation results show that the misspecified truncated normal SFA model provides the smallest mean absolute deviation and mean square error when the true data generating process is a half-normal inefficiency distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Asymmetric kernel method in the study of strong stability of the PH/M/1 queuing system Random walk on spheres method for solving anisotropic transient diffusion problems and flux calculations Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition On the estimation of periodic signals in the diffusion process using a high-frequency scheme Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1