一种用于地面-车辆-轮胎-地形交互的高性能高保真度模拟的集成框架

R. Serban, D. Negrut, A. Recuero, P. Jayakumar
{"title":"一种用于地面-车辆-轮胎-地形交互的高性能高保真度模拟的集成框架","authors":"R. Serban, D. Negrut, A. Recuero, P. Jayakumar","doi":"10.1504/IJVP.2019.10021232","DOIUrl":null,"url":null,"abstract":"Assessing the mobility of off-road vehicles is a complex task that most often falls back on semi-empirical approaches to quantify the tire-terrain interaction. We introduce a high-fidelity ground vehicle mobility simulation framework that uses physics-based models of the vehicle, tyres, and terrain to factor in both tyre flexibility and soil deformation. The tyres are modelled using a nonlinear finite element approach that involves layers of orthotropic shell elements. The soil is represented as a large collection of rigid elements that interact through contact, friction, and cohesive forces. The high-fidelity vehicle models incorporate suspension, steering, driveline, and powertrain models. To alleviate the prohibitive computational costs associated with a coupled simulation of the overall problem, we propose a decoupled approach implemented as an explicit, force-displacement co-simulation framework which is demonstrated on several full-vehicle on soft soil simulations. UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. #28937.","PeriodicalId":52169,"journal":{"name":"International Journal of Vehicle Performance","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An integrated framework for high-performance, high-fidelity simulation of ground vehicle-tyre-terrain interaction\",\"authors\":\"R. Serban, D. Negrut, A. Recuero, P. Jayakumar\",\"doi\":\"10.1504/IJVP.2019.10021232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing the mobility of off-road vehicles is a complex task that most often falls back on semi-empirical approaches to quantify the tire-terrain interaction. We introduce a high-fidelity ground vehicle mobility simulation framework that uses physics-based models of the vehicle, tyres, and terrain to factor in both tyre flexibility and soil deformation. The tyres are modelled using a nonlinear finite element approach that involves layers of orthotropic shell elements. The soil is represented as a large collection of rigid elements that interact through contact, friction, and cohesive forces. The high-fidelity vehicle models incorporate suspension, steering, driveline, and powertrain models. To alleviate the prohibitive computational costs associated with a coupled simulation of the overall problem, we propose a decoupled approach implemented as an explicit, force-displacement co-simulation framework which is demonstrated on several full-vehicle on soft soil simulations. UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. #28937.\",\"PeriodicalId\":52169,\"journal\":{\"name\":\"International Journal of Vehicle Performance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVP.2019.10021232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVP.2019.10021232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

评估越野车的机动性是一项复杂的任务,通常依靠半经验方法来量化轮胎与地形的相互作用。我们介绍了一个高保真地面车辆机动性模拟框架,该框架使用基于物理的车辆、轮胎和地形模型来考虑轮胎灵活性和土壤变形。使用非线性有限元方法对轮胎进行建模,该方法包括正交各向异性壳体单元层。土壤表现为通过接触、摩擦和内聚力相互作用的刚性元件的大量集合。高保真度车辆模型包括悬架、转向、动力传动系统和动力传动系统模型。为了减轻与整体问题的耦合模拟相关的高昂计算成本,我们提出了一种解耦方法,该方法作为一个显式的力-位移协同模拟框架实现,并在软土上的几次整车模拟中进行了演示。未分类:分发声明A.批准公开发布;分发是无限的#28937
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An integrated framework for high-performance, high-fidelity simulation of ground vehicle-tyre-terrain interaction
Assessing the mobility of off-road vehicles is a complex task that most often falls back on semi-empirical approaches to quantify the tire-terrain interaction. We introduce a high-fidelity ground vehicle mobility simulation framework that uses physics-based models of the vehicle, tyres, and terrain to factor in both tyre flexibility and soil deformation. The tyres are modelled using a nonlinear finite element approach that involves layers of orthotropic shell elements. The soil is represented as a large collection of rigid elements that interact through contact, friction, and cohesive forces. The high-fidelity vehicle models incorporate suspension, steering, driveline, and powertrain models. To alleviate the prohibitive computational costs associated with a coupled simulation of the overall problem, we propose a decoupled approach implemented as an explicit, force-displacement co-simulation framework which is demonstrated on several full-vehicle on soft soil simulations. UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. #28937.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Performance
International Journal of Vehicle Performance Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.20
自引率
0.00%
发文量
30
期刊最新文献
Six-sigma robust design optimisation of an electric bus considering crashworthiness and lightweight Analytical model for combined ride and handling with leaf spring suspension in commercial vehicles Shifting control optimisation of automatic transmission with congested conditions identification based on the support vector machine Dual evaporator system as an alternative for air-conditioning and refrigeration in automobiles Performance analysis of automotive exhaust muffler characteristics integrating supervised machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1