{"title":"成本计算方法在葡萄牙住宅太阳能热系统资本成本估算中的应用","authors":"A. Ferreira, Ângela Silva","doi":"10.5278/IJSEPM.3483","DOIUrl":null,"url":null,"abstract":"The concerns regarding the environmental damage require changes not only on how the energy is consumed but also how it is produced. The close relationship between energy use and the economic growth exposes the need for continuous monitoring of energy consumption, which cannot be achieved without assessing capital and operational costs from its conversion to end-use. Solar thermal systems offer few advantages over other renewable resources to meet the energy demand in the small-scale building sector. Solar-thermal technologies can play a leading role in meeting the decarbonisation targets set in Europe. The reports from the International Energy Agency (IEA) shows that solar heating has the potential to cover more than 16% of the low-temperature heat use in energy mix scenario. In Europe, this share might translate into 45% growth of the installed solar thermal capacity by 2020, setting a challenging target of 1 m2 of collector area installed per capita by 2020 and of 1.3 m2 by 2050. The main objective of the present work is to define a costing methodology able to estimate the capital cost of solar-thermal systems according to the system size and energy requirements of a specific residential building. The costing methodology consists of the derivation of a cost expression for each component by integrating thermodynamic and cost coefficients, adjusted for this kind of technology, and also taking into account real market data. The model was validated for a reference dwelling in Lisbon, with an occupation of 4 people with an estimated energy need of 2 037 kWh/year in terms of DHW. Results of the reference scenario show that is required at least 4 m2 of solar collector and the system cost ranges from 703.2€ per m2 to 763.2€ per m2, depending on the acceptable storage tank capacity.","PeriodicalId":37803,"journal":{"name":"International Journal of Sustainable Energy Planning and Management","volume":"26 1","pages":"33-46"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of a Costing Methodology to Estimate Capital Costs of Solar Thermal Systems in Residential Portuguese Context\",\"authors\":\"A. Ferreira, Ângela Silva\",\"doi\":\"10.5278/IJSEPM.3483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concerns regarding the environmental damage require changes not only on how the energy is consumed but also how it is produced. The close relationship between energy use and the economic growth exposes the need for continuous monitoring of energy consumption, which cannot be achieved without assessing capital and operational costs from its conversion to end-use. Solar thermal systems offer few advantages over other renewable resources to meet the energy demand in the small-scale building sector. Solar-thermal technologies can play a leading role in meeting the decarbonisation targets set in Europe. The reports from the International Energy Agency (IEA) shows that solar heating has the potential to cover more than 16% of the low-temperature heat use in energy mix scenario. In Europe, this share might translate into 45% growth of the installed solar thermal capacity by 2020, setting a challenging target of 1 m2 of collector area installed per capita by 2020 and of 1.3 m2 by 2050. The main objective of the present work is to define a costing methodology able to estimate the capital cost of solar-thermal systems according to the system size and energy requirements of a specific residential building. The costing methodology consists of the derivation of a cost expression for each component by integrating thermodynamic and cost coefficients, adjusted for this kind of technology, and also taking into account real market data. The model was validated for a reference dwelling in Lisbon, with an occupation of 4 people with an estimated energy need of 2 037 kWh/year in terms of DHW. Results of the reference scenario show that is required at least 4 m2 of solar collector and the system cost ranges from 703.2€ per m2 to 763.2€ per m2, depending on the acceptable storage tank capacity.\",\"PeriodicalId\":37803,\"journal\":{\"name\":\"International Journal of Sustainable Energy Planning and Management\",\"volume\":\"26 1\",\"pages\":\"33-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Energy Planning and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5278/IJSEPM.3483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy Planning and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5278/IJSEPM.3483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Application of a Costing Methodology to Estimate Capital Costs of Solar Thermal Systems in Residential Portuguese Context
The concerns regarding the environmental damage require changes not only on how the energy is consumed but also how it is produced. The close relationship between energy use and the economic growth exposes the need for continuous monitoring of energy consumption, which cannot be achieved without assessing capital and operational costs from its conversion to end-use. Solar thermal systems offer few advantages over other renewable resources to meet the energy demand in the small-scale building sector. Solar-thermal technologies can play a leading role in meeting the decarbonisation targets set in Europe. The reports from the International Energy Agency (IEA) shows that solar heating has the potential to cover more than 16% of the low-temperature heat use in energy mix scenario. In Europe, this share might translate into 45% growth of the installed solar thermal capacity by 2020, setting a challenging target of 1 m2 of collector area installed per capita by 2020 and of 1.3 m2 by 2050. The main objective of the present work is to define a costing methodology able to estimate the capital cost of solar-thermal systems according to the system size and energy requirements of a specific residential building. The costing methodology consists of the derivation of a cost expression for each component by integrating thermodynamic and cost coefficients, adjusted for this kind of technology, and also taking into account real market data. The model was validated for a reference dwelling in Lisbon, with an occupation of 4 people with an estimated energy need of 2 037 kWh/year in terms of DHW. Results of the reference scenario show that is required at least 4 m2 of solar collector and the system cost ranges from 703.2€ per m2 to 763.2€ per m2, depending on the acceptable storage tank capacity.
期刊介绍:
The journal is an international interdisciplinary journal in Sustainable Energy Planning and Management combining engineering and social science within Energy System Analysis, Feasibility Studies and Public Regulation. The journal especially welcomes papers within the following three focus areas: Energy System analysis including theories, methodologies, data handling and software tools as well as specific models and analyses at local, regional, country and/or global level. Economics, Socio economics and Feasibility studies including theories and methodologies of institutional economics as well as specific feasibility studies and analyses. Public Regulation and management including theories and methodologies as well as specific analyses and proposals in the light of the implementation and transition into sustainable energy systems.