关于INM-RAS气候模型中北冰洋气候状态的多年潜在可预测性

Pub Date : 2022-04-01 DOI:10.1515/rnam-2022-0010
E. Volodin, V. Vorobyeva
{"title":"关于INM-RAS气候模型中北冰洋气候状态的多年潜在可预测性","authors":"E. Volodin, V. Vorobyeva","doi":"10.1515/rnam-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract Idealized numerical experiments with the INM RAS climate model are used to study the potential predictability of the temperature in the upper 300-meter layer of the Arctic Ocean. It is shown that the heat content can be predictable for up to 4–6 years. Positive anomalies of the temperature and salinity are preceded for several years by a state in which the influx of Atlantic water into the Arctic Ocean exceeds the average value. Surface fields, including temperature, salinity, concentration and mass of ice, are less predictable than the heat content in the layer of 0–300 meters.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the multi-annual potential predictability of the Arctic Ocean climate state in the INM RAS climate model\",\"authors\":\"E. Volodin, V. Vorobyeva\",\"doi\":\"10.1515/rnam-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Idealized numerical experiments with the INM RAS climate model are used to study the potential predictability of the temperature in the upper 300-meter layer of the Arctic Ocean. It is shown that the heat content can be predictable for up to 4–6 years. Positive anomalies of the temperature and salinity are preceded for several years by a state in which the influx of Atlantic water into the Arctic Ocean exceeds the average value. Surface fields, including temperature, salinity, concentration and mass of ice, are less predictable than the heat content in the layer of 0–300 meters.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2022-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要利用INM-RAS气候模型的理想化数值实验研究了北冰洋上层300米温度的潜在可预测性。研究表明,热含量可以预测长达4-6年。在温度和盐度出现正异常之前的几年里,大西洋流入北冰洋的水量超过了平均值。表面场,包括温度、盐度、冰的浓度和质量,比0-300米层的热含量更不可预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
On the multi-annual potential predictability of the Arctic Ocean climate state in the INM RAS climate model
Abstract Idealized numerical experiments with the INM RAS climate model are used to study the potential predictability of the temperature in the upper 300-meter layer of the Arctic Ocean. It is shown that the heat content can be predictable for up to 4–6 years. Positive anomalies of the temperature and salinity are preceded for several years by a state in which the influx of Atlantic water into the Arctic Ocean exceeds the average value. Surface fields, including temperature, salinity, concentration and mass of ice, are less predictable than the heat content in the layer of 0–300 meters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1