{"title":"悬停长冠对转旋翼空气动力学计算研究","authors":"C. Huo, P. Lv, A. Sun","doi":"10.1177/1756829319833686","DOIUrl":null,"url":null,"abstract":"This paper aims to investigate the aerodynamics including the global performance and flow characteristics of a long-shrouded contra-rotating rotor by developing a full 3D RANS computation. Through validations by current experiments on the same shrouded contra-rotating rotor, the computation using sliding mesh method and the computational zone with an extended nozzle downstream flow field effectively works; the time-averaged solution of the unsteady computation reveals that more uniform flow presents after the downstream rotor, which implies that the rear rotor rotating at opposite direction greatly compensates and reduces the wake; the unsteady computations further explore the flow field throughout the whole system, along the span and around blade tips. Complex flow patterns including the vortices and their interactions are indicated around the blade roots and tips. For further identifying rotor configurations, the rotor–rotor distance and switching two rotor speeds were studied. The computation reveals that setting the second rotor backwards decreases the wake scale but increases its intensity in the downstream nozzle zone. However, for the effect of switching speeds, computations cannot precisely solve the flow when the rear rotor under the windmill because of the upstream rotor rotating much faster than the other one. All the phenomena from computations well implement the experimental observations.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319833686","citationCount":"1","resultStr":"{\"title\":\"Computational study on the aerodynamics of a long-shrouded contra-rotating rotor in hover\",\"authors\":\"C. Huo, P. Lv, A. Sun\",\"doi\":\"10.1177/1756829319833686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to investigate the aerodynamics including the global performance and flow characteristics of a long-shrouded contra-rotating rotor by developing a full 3D RANS computation. Through validations by current experiments on the same shrouded contra-rotating rotor, the computation using sliding mesh method and the computational zone with an extended nozzle downstream flow field effectively works; the time-averaged solution of the unsteady computation reveals that more uniform flow presents after the downstream rotor, which implies that the rear rotor rotating at opposite direction greatly compensates and reduces the wake; the unsteady computations further explore the flow field throughout the whole system, along the span and around blade tips. Complex flow patterns including the vortices and their interactions are indicated around the blade roots and tips. For further identifying rotor configurations, the rotor–rotor distance and switching two rotor speeds were studied. The computation reveals that setting the second rotor backwards decreases the wake scale but increases its intensity in the downstream nozzle zone. However, for the effect of switching speeds, computations cannot precisely solve the flow when the rear rotor under the windmill because of the upstream rotor rotating much faster than the other one. All the phenomena from computations well implement the experimental observations.\",\"PeriodicalId\":49053,\"journal\":{\"name\":\"International Journal of Micro Air Vehicles\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1756829319833686\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Micro Air Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1756829319833686\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756829319833686","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Computational study on the aerodynamics of a long-shrouded contra-rotating rotor in hover
This paper aims to investigate the aerodynamics including the global performance and flow characteristics of a long-shrouded contra-rotating rotor by developing a full 3D RANS computation. Through validations by current experiments on the same shrouded contra-rotating rotor, the computation using sliding mesh method and the computational zone with an extended nozzle downstream flow field effectively works; the time-averaged solution of the unsteady computation reveals that more uniform flow presents after the downstream rotor, which implies that the rear rotor rotating at opposite direction greatly compensates and reduces the wake; the unsteady computations further explore the flow field throughout the whole system, along the span and around blade tips. Complex flow patterns including the vortices and their interactions are indicated around the blade roots and tips. For further identifying rotor configurations, the rotor–rotor distance and switching two rotor speeds were studied. The computation reveals that setting the second rotor backwards decreases the wake scale but increases its intensity in the downstream nozzle zone. However, for the effect of switching speeds, computations cannot precisely solve the flow when the rear rotor under the windmill because of the upstream rotor rotating much faster than the other one. All the phenomena from computations well implement the experimental observations.
期刊介绍:
The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.