磁共振图像分类中监督技术的最优选择

IF 0.9 Q3 ENGINEERING, MULTIDISCIPLINARY 3c Tecnologia Pub Date : 2020-03-23 DOI:10.17993/3ctecno.2020.specialissue4.313-327
B. Aruna Devi, M. Pallikonda Rajasekaran
{"title":"磁共振图像分类中监督技术的最优选择","authors":"B. Aruna Devi, M. Pallikonda Rajasekaran","doi":"10.17993/3ctecno.2020.specialissue4.313-327","DOIUrl":null,"url":null,"abstract":"Magnetic Resonance Imaging (MRI) is a modern, robust method that uses in the detection of various medical problems. In this research work, a trial is used to attempt for the detection of tumour in pancreas MR images. An automated classifier is used for detection of tumour in MR images and avoids the drawbacks of MRI. This automated classifiers can detect automatically, either the MR image is affected or not affected. Features are extracted from MR images using second order statistics approach and are classified by two techniques Support Vector Machine (SVM) and Extreme Learning Machine (ELM). SVM approach has high classification accuracy (96%) which is higher than ELM, while ELM performs faster compared to SVM.","PeriodicalId":41375,"journal":{"name":"3c Tecnologia","volume":"1 1","pages":"313-327"},"PeriodicalIF":0.9000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal choice of supervised techniques for MR image classification\",\"authors\":\"B. Aruna Devi, M. Pallikonda Rajasekaran\",\"doi\":\"10.17993/3ctecno.2020.specialissue4.313-327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic Resonance Imaging (MRI) is a modern, robust method that uses in the detection of various medical problems. In this research work, a trial is used to attempt for the detection of tumour in pancreas MR images. An automated classifier is used for detection of tumour in MR images and avoids the drawbacks of MRI. This automated classifiers can detect automatically, either the MR image is affected or not affected. Features are extracted from MR images using second order statistics approach and are classified by two techniques Support Vector Machine (SVM) and Extreme Learning Machine (ELM). SVM approach has high classification accuracy (96%) which is higher than ELM, while ELM performs faster compared to SVM.\",\"PeriodicalId\":41375,\"journal\":{\"name\":\"3c Tecnologia\",\"volume\":\"1 1\",\"pages\":\"313-327\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3c Tecnologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctecno.2020.specialissue4.313-327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3c Tecnologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctecno.2020.specialissue4.313-327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

磁共振成像(MRI)是一种现代的、强大的方法,用于检测各种医疗问题。在这项研究工作中,一个试验是用来尝试检测肿瘤胰腺磁共振图像。自动分类器用于MR图像中的肿瘤检测,避免了MRI的缺点。该自动分类器可以自动检测MR图像是否受到影响。采用二阶统计方法提取磁共振图像的特征,并采用支持向量机(SVM)和极限学习机(ELM)两种技术进行分类。SVM方法具有较高的分类准确率(96%),高于ELM方法,而ELM方法的分类速度要快于SVM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal choice of supervised techniques for MR image classification
Magnetic Resonance Imaging (MRI) is a modern, robust method that uses in the detection of various medical problems. In this research work, a trial is used to attempt for the detection of tumour in pancreas MR images. An automated classifier is used for detection of tumour in MR images and avoids the drawbacks of MRI. This automated classifiers can detect automatically, either the MR image is affected or not affected. Features are extracted from MR images using second order statistics approach and are classified by two techniques Support Vector Machine (SVM) and Extreme Learning Machine (ELM). SVM approach has high classification accuracy (96%) which is higher than ELM, while ELM performs faster compared to SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3c Tecnologia
3c Tecnologia ENGINEERING, MULTIDISCIPLINARY-
自引率
33.30%
发文量
16
审稿时长
12 weeks
期刊最新文献
Agente conversacional para consultas sobre servicio médico en una clínica privada A cost-effective simplified energy monitoring system using IOT Comparativa de metodologías de desarrollo de aplicaciones móviles Impact deflectometry in the structural evaluation, Central Highway km 12 + 250 - km 26 + 500, Lima 2020 Deficiencies in the old buildings of the educational institutions in the district of Comas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1