掺抗菌功能材料砂浆的基本性能和耐久性比较

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Magazine of Concrete Research Pub Date : 2023-08-15 DOI:10.1680/jmacr.23.00001
Il-Sun Kim, So-Yeong Choi, E. Yang
{"title":"掺抗菌功能材料砂浆的基本性能和耐久性比较","authors":"Il-Sun Kim, So-Yeong Choi, E. Yang","doi":"10.1680/jmacr.23.00001","DOIUrl":null,"url":null,"abstract":"This study evaluated the fundamental properties and durability of mortar mixed with phytoncide, zeolite, and copper powder. There was no significant difference in the flow value, compressive strength, and flexural strength of the mortar for different phytoncide substitution ratios. As the substitution ratio of zeolite increased, the workability decreased, while the compressive strength, flexural strength, and chloride penetration resistance increased. The compressive and flexural strengths of the mortar mixed with copper powder were higher than those of the reference mix. As the copper powder substitution ratio increased, the flow value slightly increased, while the chloride penetration resistance decreased.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of fundamental properties and durability of mortar mixed with antibacterial functional materials\",\"authors\":\"Il-Sun Kim, So-Yeong Choi, E. Yang\",\"doi\":\"10.1680/jmacr.23.00001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluated the fundamental properties and durability of mortar mixed with phytoncide, zeolite, and copper powder. There was no significant difference in the flow value, compressive strength, and flexural strength of the mortar for different phytoncide substitution ratios. As the substitution ratio of zeolite increased, the workability decreased, while the compressive strength, flexural strength, and chloride penetration resistance increased. The compressive and flexural strengths of the mortar mixed with copper powder were higher than those of the reference mix. As the copper powder substitution ratio increased, the flow value slightly increased, while the chloride penetration resistance decreased.\",\"PeriodicalId\":18113,\"journal\":{\"name\":\"Magazine of Concrete Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magazine of Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jmacr.23.00001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.23.00001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

本研究评估了植物杀菌剂、沸石和铜粉混合砂浆的基本性能和耐久性。不同植物杀菌剂替代比例砂浆的流动值、抗压强度和抗折强度均无显著差异。随着沸石取代率的增加,和易性降低,抗压强度、抗折强度和抗氯离子渗透能力增加。掺铜粉砂浆的抗压强度和抗折强度均高于对照砂浆。随着铜粉取代率的增加,流动值略有增加,而氯离子渗透阻力减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of fundamental properties and durability of mortar mixed with antibacterial functional materials
This study evaluated the fundamental properties and durability of mortar mixed with phytoncide, zeolite, and copper powder. There was no significant difference in the flow value, compressive strength, and flexural strength of the mortar for different phytoncide substitution ratios. As the substitution ratio of zeolite increased, the workability decreased, while the compressive strength, flexural strength, and chloride penetration resistance increased. The compressive and flexural strengths of the mortar mixed with copper powder were higher than those of the reference mix. As the copper powder substitution ratio increased, the flow value slightly increased, while the chloride penetration resistance decreased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magazine of Concrete Research
Magazine of Concrete Research 工程技术-材料科学:综合
CiteScore
4.60
自引率
11.10%
发文量
102
审稿时长
5 months
期刊介绍: For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed. Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.
期刊最新文献
Characterisation proposal of direct shear strength of steel fibre-reinforced concrete Punching shear tests and design of UHTCC-enhanced RC slab-column joints with shear reinforcements Engineering and microstructural properties of self-compacting concrete containing coarse recycled concrete aggregate Modelling chloride diffusion in concrete with carbonated surface layer Shear friction capacity of monolithic construction joints reinforced with self-prestressing reinforcing steel bars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1