{"title":"磁黄铁矿对空气中黄铁矿-磁黄铁矿混合粉末燃烧行为的影响及动力学机理","authors":"Changshun Tian, Y. Rao, Gang Su, Tao Huang","doi":"10.1155/2023/9567708","DOIUrl":null,"url":null,"abstract":"In this study, we performed a comparative analysis of the combustion behavior of pyrite, pyrrhotite, and pyrite-pyrrhotite mixture (mixed mineral) powders in an air atmosphere. To study the influence of the pyrrhotite content in mixed mineral powders on the combustion behavior in the air, thermogravimetric mass spectrometry, X-ray diffraction analysis, and scanning electron microscopy were employed. The results indicated that pyrrhotite lead to a weight gain in the mixed minerals during the combustion process. Pyrrhotite particles are more easily adsorbed on the surface of pyrite particles during mixed mineral combustion due to their strong ability to absorb oxygen, which accelerates pyrite combustion. The weight loss of mixed minerals decreased during the combustion process with increasing pyrrhotite content, resulting from pyrite encapsulation by agglomerated and sintered pyrrhotite during combustion. The calculated kinetic parameters and phase analysis results suggested that pyrite combustion is consistent with the shrinking core mechanism, and in the combustion process, the irregular pyrite particle shrank into a spherical particle; the combustion products of pyrrhotite grew in a layer-by-layer manner. Pyrrhotite combustion corresponded to the three-dimensional diffusion mechanism, and mixed mineral combustion was dominated by the shrinking core mechanism and supplemented by the three-dimensional diffusion mechanism. SO2, as the main combustion product, was continuously generated and volatilized in the reaction, signifying that the combustion reaction of pyrite is a two-phase reaction involving gas and solid.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Pyrrhotite on the Combustion Behavior and the Kinetic Mechanism of Pyrite-Pyrrhotite Mixture Powders in the Air\",\"authors\":\"Changshun Tian, Y. Rao, Gang Su, Tao Huang\",\"doi\":\"10.1155/2023/9567708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we performed a comparative analysis of the combustion behavior of pyrite, pyrrhotite, and pyrite-pyrrhotite mixture (mixed mineral) powders in an air atmosphere. To study the influence of the pyrrhotite content in mixed mineral powders on the combustion behavior in the air, thermogravimetric mass spectrometry, X-ray diffraction analysis, and scanning electron microscopy were employed. The results indicated that pyrrhotite lead to a weight gain in the mixed minerals during the combustion process. Pyrrhotite particles are more easily adsorbed on the surface of pyrite particles during mixed mineral combustion due to their strong ability to absorb oxygen, which accelerates pyrite combustion. The weight loss of mixed minerals decreased during the combustion process with increasing pyrrhotite content, resulting from pyrite encapsulation by agglomerated and sintered pyrrhotite during combustion. The calculated kinetic parameters and phase analysis results suggested that pyrite combustion is consistent with the shrinking core mechanism, and in the combustion process, the irregular pyrite particle shrank into a spherical particle; the combustion products of pyrrhotite grew in a layer-by-layer manner. Pyrrhotite combustion corresponded to the three-dimensional diffusion mechanism, and mixed mineral combustion was dominated by the shrinking core mechanism and supplemented by the three-dimensional diffusion mechanism. SO2, as the main combustion product, was continuously generated and volatilized in the reaction, signifying that the combustion reaction of pyrite is a two-phase reaction involving gas and solid.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9567708\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/9567708","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effects of Pyrrhotite on the Combustion Behavior and the Kinetic Mechanism of Pyrite-Pyrrhotite Mixture Powders in the Air
In this study, we performed a comparative analysis of the combustion behavior of pyrite, pyrrhotite, and pyrite-pyrrhotite mixture (mixed mineral) powders in an air atmosphere. To study the influence of the pyrrhotite content in mixed mineral powders on the combustion behavior in the air, thermogravimetric mass spectrometry, X-ray diffraction analysis, and scanning electron microscopy were employed. The results indicated that pyrrhotite lead to a weight gain in the mixed minerals during the combustion process. Pyrrhotite particles are more easily adsorbed on the surface of pyrite particles during mixed mineral combustion due to their strong ability to absorb oxygen, which accelerates pyrite combustion. The weight loss of mixed minerals decreased during the combustion process with increasing pyrrhotite content, resulting from pyrite encapsulation by agglomerated and sintered pyrrhotite during combustion. The calculated kinetic parameters and phase analysis results suggested that pyrite combustion is consistent with the shrinking core mechanism, and in the combustion process, the irregular pyrite particle shrank into a spherical particle; the combustion products of pyrrhotite grew in a layer-by-layer manner. Pyrrhotite combustion corresponded to the three-dimensional diffusion mechanism, and mixed mineral combustion was dominated by the shrinking core mechanism and supplemented by the three-dimensional diffusion mechanism. SO2, as the main combustion product, was continuously generated and volatilized in the reaction, signifying that the combustion reaction of pyrite is a two-phase reaction involving gas and solid.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.