Andy Carrasco Preciado, Jorge García Regalado, Gino Cornejo Marcos
{"title":"概率评分模型的构建:以SEGUMAR S.A.公司为例","authors":"Andy Carrasco Preciado, Jorge García Regalado, Gino Cornejo Marcos","doi":"10.46661/revmetodoscuanteconempresa.7256","DOIUrl":null,"url":null,"abstract":"El objetivo del presente trabajo es la construcción de un modelo credit scoring de probabilidad con la finalidad de minimizar el riesgo de incumplimiento de pago de la cartera de clientes, para lo que se utilizó variables dependientes (cliente “bueno o malo”) y como independientes (características de los clientes) para proporcionar un análisis correcto para determinar si la empresa concede o no un crédito. Se aplicó la metodología descriptiva y enfoques cuantitativos y cualitativos tomando como fuentes primarias los datos de la cartera de clientes de la empresa SEGUMAR S.A. La base de datos consiste de la información de 100 personas solicitantes de un crédito y se incluye en la medición de 7 variables para cada persona. Cada solicitante se clasifica en una de dos categorías posibles, \"buen cliente\" (70 casos) o \"mal cliente\" (30 casos). Se desarrolló una regla de credit scoring para determinar si un nuevo solicitante es “Bueno” o “Malo” cliente, basándose en los valores de una o más variables explicativas resultantes del modelo final. Este estudio evaluó las características que tienen los clientes al momento de pedir un crédito y según las características de cada cliente se puede realizar predicciones, clasificarlos como un buen o un mal cliente. En los resultados obtenidos del modelo Logit se puede concluir que las variables seleccionadas que se aplicaron en el modelo arrojaron un 76% de éxito que nos permite clasificar a cada uno de nuestros clientes como un buen cliente o mal cliente en nuestro modelo.","PeriodicalId":40053,"journal":{"name":"Revista de Metodos Cuantitativos para la Economia y la Empresa","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construcción de un modelo Scoring de Probabilidad: el caso de la empresa SEGUMAR S.A.\",\"authors\":\"Andy Carrasco Preciado, Jorge García Regalado, Gino Cornejo Marcos\",\"doi\":\"10.46661/revmetodoscuanteconempresa.7256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El objetivo del presente trabajo es la construcción de un modelo credit scoring de probabilidad con la finalidad de minimizar el riesgo de incumplimiento de pago de la cartera de clientes, para lo que se utilizó variables dependientes (cliente “bueno o malo”) y como independientes (características de los clientes) para proporcionar un análisis correcto para determinar si la empresa concede o no un crédito. Se aplicó la metodología descriptiva y enfoques cuantitativos y cualitativos tomando como fuentes primarias los datos de la cartera de clientes de la empresa SEGUMAR S.A. La base de datos consiste de la información de 100 personas solicitantes de un crédito y se incluye en la medición de 7 variables para cada persona. Cada solicitante se clasifica en una de dos categorías posibles, \\\"buen cliente\\\" (70 casos) o \\\"mal cliente\\\" (30 casos). Se desarrolló una regla de credit scoring para determinar si un nuevo solicitante es “Bueno” o “Malo” cliente, basándose en los valores de una o más variables explicativas resultantes del modelo final. Este estudio evaluó las características que tienen los clientes al momento de pedir un crédito y según las características de cada cliente se puede realizar predicciones, clasificarlos como un buen o un mal cliente. En los resultados obtenidos del modelo Logit se puede concluir que las variables seleccionadas que se aplicaron en el modelo arrojaron un 76% de éxito que nos permite clasificar a cada uno de nuestros clientes como un buen cliente o mal cliente en nuestro modelo.\",\"PeriodicalId\":40053,\"journal\":{\"name\":\"Revista de Metodos Cuantitativos para la Economia y la Empresa\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Metodos Cuantitativos para la Economia y la Empresa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46661/revmetodoscuanteconempresa.7256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Metodos Cuantitativos para la Economia y la Empresa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46661/revmetodoscuanteconempresa.7256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Construcción de un modelo Scoring de Probabilidad: el caso de la empresa SEGUMAR S.A.
El objetivo del presente trabajo es la construcción de un modelo credit scoring de probabilidad con la finalidad de minimizar el riesgo de incumplimiento de pago de la cartera de clientes, para lo que se utilizó variables dependientes (cliente “bueno o malo”) y como independientes (características de los clientes) para proporcionar un análisis correcto para determinar si la empresa concede o no un crédito. Se aplicó la metodología descriptiva y enfoques cuantitativos y cualitativos tomando como fuentes primarias los datos de la cartera de clientes de la empresa SEGUMAR S.A. La base de datos consiste de la información de 100 personas solicitantes de un crédito y se incluye en la medición de 7 variables para cada persona. Cada solicitante se clasifica en una de dos categorías posibles, "buen cliente" (70 casos) o "mal cliente" (30 casos). Se desarrolló una regla de credit scoring para determinar si un nuevo solicitante es “Bueno” o “Malo” cliente, basándose en los valores de una o más variables explicativas resultantes del modelo final. Este estudio evaluó las características que tienen los clientes al momento de pedir un crédito y según las características de cada cliente se puede realizar predicciones, clasificarlos como un buen o un mal cliente. En los resultados obtenidos del modelo Logit se puede concluir que las variables seleccionadas que se aplicaron en el modelo arrojaron un 76% de éxito que nos permite clasificar a cada uno de nuestros clientes como un buen cliente o mal cliente en nuestro modelo.
期刊介绍:
The Journal of Quantitative Methods for Economics and Business Administration wants to be a useful mean of communication for all those who research on mathematical, statistical or econometrical techniques and their possible applications in the world of business and economy. It is edited by a group of professors in the Department of Economics, Quantitative Methods and Economic History Department at Pablo de Olavide University in Seville ( Spain ).