《爵士乐的所有规则》

IF 0.4 2区 艺术学 0 MUSIC Music Theory Online Pub Date : 2020-09-01 DOI:10.30535/MTO.26.3.6
Brian A. Miller
{"title":"《爵士乐的所有规则》","authors":"Brian A. Miller","doi":"10.30535/MTO.26.3.6","DOIUrl":null,"url":null,"abstract":"Though improvising computer systems are hardly new, jazz has recently become the focus of a number of novel computer music projects aimed at convincingly improvising alongside humans, with a particular focus on the use of machine learning to imitate human styles. The a empt to implement a sort of Turing test for jazz, and interest from organizations like DARPA in the results, raises important questions about the nature of improvisation and musical style, but also about the ways jazz comes popularly to stand for such broad concepts as “conversation” or “democracy.” This essay explores these questions by considering robots that play straight-ahead neoclassical jazz alongside George Lewis’s free-improvising Voyager system, reading the technical details of such projects in terms of the ways they theorize the recognition and production of style, but also in terms of the political implications of human-computer musicking in an age of algorithmic surveillance and big data. Volume 26, Number 3, September 2020 Copyright © 2020 Society for Music Theory [0.1] In 2016, the Neukom Institute for Computational Science at Dartmouth College began hosting the “Turing Tests in Creative Arts,” a set of yearly competitions in music and literature intended to “determine whether people can distinguish between human and algorithmic creativity.”(1) The musical categories for the most recent contest in 2018 include “Musical Style or Free Composition” and “Improvisation with a Human Performer.” In the former, computational systems have to generate music in the style of Charlie Parker given a lead sheet, Bach’s chorales given a soprano line, electroacoustic music given some source sound, or “free composition,” apparently also in a given style. The improvisation challenge tests a system’s musicality and interactivity with a human collaborator in either jazz or free composition. And while few can claim to have won prizes for passing it, the Turing test is often invoked by researchers developing algorithmic musical systems. (2) The Flow Machines project at the Sony Computer Science Laboratories, led by François Pachet until his recent departure for Spotify, touts its Continuator (which uses a variable-order Markov model to improvise in the style of a human pianist by way of a call-and-response exchange) as having passed the Turing test, and press coverage often invokes the term when discussing a more recent project from the same team aimed at generating pop songs (Jordan 2017). Similarly, computer scientist Donya Quick’s “Kuli a” system has garnered headlines like, “If There Was a Turing Test for Music Artificial Intelligence, ‘Kuli a’ Might Pass It” (Synthtopia 2015); other recent online articles have asked, “Can We Make a Musical Turing Test?” (Hornigold 2018) and answered, “A New AI Can Write Music as Well as a Human Composer” (Kaleagasi 2017). [0.2] Many of these articles appear on sites with names like “SingularityHub” and “Futurism”; often, the Turing test is less a measure of actual computational achievement than a marker for a certain kind of popular techno-optimist (even if cynical) view of artificial intelligence and computation in general. Indeed, various scholars have argued that the test itself is widely misunderstood, owing not least to Turing himself, who begins the paper that introduces the “imitation game” with the provocation: “I propose to consider the question, ‘Can machines think?’” (1950, 433).(3) But he immediately backtracks, arguing that the question as posed is untenable, and goes on to suggest the game itself as a “closely related” replacement. In the game, a man and a woman are located in one room, and an interrogator in another; the la er asks questions of both the man and the woman in order to identify which is which, where the woman answers truthfully and the man tries to cause the interrogator to choose incorrectly.(4) The question now, rather than “Can machines think?” is “What will happen when a machine takes the part of [the man] in this game?” (Turing 1950, 434). Popular accounts of the test almost never account for two related aspects of the game, namely the inclusion of a gendered component and the doubled form of imitation involved, in which a computer imitates a man imitating a woman. Though the test is almost always understood—even in many scholarly accounts—as a ma er of making a choice between “machine or human,” Turing gives no clear indication that the addition of the machine changes the interrogator’s options from “man or woman.”(5) Thus the “imitation” in the game is not directly of human thought by mechanical means, but rather of human imitative abilities themselves—the imitation of imitation.(6) [0.3] Turing’s work on artificial intelligence is also inseparable from his codebreaking work for the British military during the Second World War, and a parallel conjuncture manifests itself today, perhaps surprisingly, in musical terms. Beginning in 2015, the United States Defense Advanced Research Projects Agency (DARPA) began funding a project called Musical Interactive Collaborative Agent (MUSICA).(7) The project is part of DARPA’s Communicating with Computers program, which “aims to enable symmetric communication between people and computers in which machines are not merely receivers of instructions but collaborators, able to harness a full range of natural modes including language, gesture and facial or other expressions.”(8) Apparently music is one such mode: the end goal of MUSICA is to produce a jazz-playing robot capable of performing convincingly with human collaborators. One of the project’s directors, Kelland Thomas, suggests that “jazz and improvisation in music represent a pinnacle of human intellectual and mental achievement” (quoted in Del Prado 2015; see Chella and Manzo i 2012 for a similar argument and an explicit proposal for a jazz Turing test). And while DARPA is famous for funding unorthodox, long-shot projects, the clear implication is that jazz improvisation is so paradigmatically representative of more general modes of human interaction that its technological replication would have some kind of military value going beyond its intellectual or aesthetic meaning. Though li le detailed information on the project is publicly available, MUSICA is based in large part on machine learning techniques—advances in computational capabilities since Turing’s time that I will return to in some detail below. According to Thomas: “We’re going to build a database of musical transcription: every Miles Davis solo and every Louis Armstrong solo we’re going to hand-curate. We’re going to develop machine learning techniques to analyze these solos and find deeper relationships between the notes and the harmonies, and that will inform the system—that’ll be the knowledge base” (quoted in Thielman 2015). Though the broader claim— linking jazz to conversation in natural language and suggesting that modeling the former computationally is the best way to learn anything useful about the la er—evokes difficult questions about the relation between music and language, in its actual implementation MUSICA is more immediately concerned with questions of musical style. While the project’s few public statements never define jazz explicitly, it appears that what is at issue is a very specific, stereotypical view: smallto medium-sized jazz combos playing standards in a relatively conventional format; in other words, the neoclassical style associated with conservative institutions like Jazz at Lincoln Center (see Chapman 2018). While the machine learning model is intended to capture the characteristic ways players like Armstrong and Davis form musical u erances, it is far from clear exactly how the system would reconcile such varied styles as Armstrong’s 1920s New Orleans sound and Davis’s “electric” work from the 1970s, or even to what extent the project recognizes such differences as relevant for musical interaction. [0.4] This article examines several different approaches to computational improvisation, all in the orbit of jazz but implementing two very different styles. While li le information and no technical details about MUSICA are publicly available, another project, from the Robotic Musicianship Group at Georgia Tech’s Center for Music Technology, takes a similar approach to robotic jazz and has published a number of papers focused on the project’s technical aspects as well as many publicly available performance videos.(9) This robot, named Shimon, plays the marimba alongside humans in a traditional jazz combo based on a conventional understanding of key, harmony, and form, but with a complex machine learning-based model for generating solos. I compare Shimon to a computer program called Impro-Visor (Gillick, Tang, and Keller 2010), which does not perform in real time but which generates solos in a similar style using a different corpus-based machine learning model, and I contrast both of these systems with George Lewis’s Voyager, a long-standing project that stems from Lewis’s work in free improvisation.(10) [0.5] The juxtaposition has a dual focus: first, how do these computational approaches to improvisation handle the challenges of imitating human musical styles, and how is style itself theorized both implicitly and explicitly? In other words, how do the features and affordances of computation become musical in relation to such varied human improvisatory practices? Because all of these systems change frequently (for example, Voyager having been updated over the course of several decades, and Shimon having multiple modes of operation along with various upgrades), my account is not necessarily concerned with capturing any system’s exact functioning in any particular performance, nor am I interested in determining what the “best” computational implementation of jazz or free improvisation might be. Instead, for each system, I read the available technical details, however partial, for what they reveal about","PeriodicalId":44918,"journal":{"name":"Music Theory Online","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"“All of the Rules of Jazz”\",\"authors\":\"Brian A. Miller\",\"doi\":\"10.30535/MTO.26.3.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though improvising computer systems are hardly new, jazz has recently become the focus of a number of novel computer music projects aimed at convincingly improvising alongside humans, with a particular focus on the use of machine learning to imitate human styles. The a empt to implement a sort of Turing test for jazz, and interest from organizations like DARPA in the results, raises important questions about the nature of improvisation and musical style, but also about the ways jazz comes popularly to stand for such broad concepts as “conversation” or “democracy.” This essay explores these questions by considering robots that play straight-ahead neoclassical jazz alongside George Lewis’s free-improvising Voyager system, reading the technical details of such projects in terms of the ways they theorize the recognition and production of style, but also in terms of the political implications of human-computer musicking in an age of algorithmic surveillance and big data. Volume 26, Number 3, September 2020 Copyright © 2020 Society for Music Theory [0.1] In 2016, the Neukom Institute for Computational Science at Dartmouth College began hosting the “Turing Tests in Creative Arts,” a set of yearly competitions in music and literature intended to “determine whether people can distinguish between human and algorithmic creativity.”(1) The musical categories for the most recent contest in 2018 include “Musical Style or Free Composition” and “Improvisation with a Human Performer.” In the former, computational systems have to generate music in the style of Charlie Parker given a lead sheet, Bach’s chorales given a soprano line, electroacoustic music given some source sound, or “free composition,” apparently also in a given style. The improvisation challenge tests a system’s musicality and interactivity with a human collaborator in either jazz or free composition. And while few can claim to have won prizes for passing it, the Turing test is often invoked by researchers developing algorithmic musical systems. (2) The Flow Machines project at the Sony Computer Science Laboratories, led by François Pachet until his recent departure for Spotify, touts its Continuator (which uses a variable-order Markov model to improvise in the style of a human pianist by way of a call-and-response exchange) as having passed the Turing test, and press coverage often invokes the term when discussing a more recent project from the same team aimed at generating pop songs (Jordan 2017). Similarly, computer scientist Donya Quick’s “Kuli a” system has garnered headlines like, “If There Was a Turing Test for Music Artificial Intelligence, ‘Kuli a’ Might Pass It” (Synthtopia 2015); other recent online articles have asked, “Can We Make a Musical Turing Test?” (Hornigold 2018) and answered, “A New AI Can Write Music as Well as a Human Composer” (Kaleagasi 2017). [0.2] Many of these articles appear on sites with names like “SingularityHub” and “Futurism”; often, the Turing test is less a measure of actual computational achievement than a marker for a certain kind of popular techno-optimist (even if cynical) view of artificial intelligence and computation in general. Indeed, various scholars have argued that the test itself is widely misunderstood, owing not least to Turing himself, who begins the paper that introduces the “imitation game” with the provocation: “I propose to consider the question, ‘Can machines think?’” (1950, 433).(3) But he immediately backtracks, arguing that the question as posed is untenable, and goes on to suggest the game itself as a “closely related” replacement. In the game, a man and a woman are located in one room, and an interrogator in another; the la er asks questions of both the man and the woman in order to identify which is which, where the woman answers truthfully and the man tries to cause the interrogator to choose incorrectly.(4) The question now, rather than “Can machines think?” is “What will happen when a machine takes the part of [the man] in this game?” (Turing 1950, 434). Popular accounts of the test almost never account for two related aspects of the game, namely the inclusion of a gendered component and the doubled form of imitation involved, in which a computer imitates a man imitating a woman. Though the test is almost always understood—even in many scholarly accounts—as a ma er of making a choice between “machine or human,” Turing gives no clear indication that the addition of the machine changes the interrogator’s options from “man or woman.”(5) Thus the “imitation” in the game is not directly of human thought by mechanical means, but rather of human imitative abilities themselves—the imitation of imitation.(6) [0.3] Turing’s work on artificial intelligence is also inseparable from his codebreaking work for the British military during the Second World War, and a parallel conjuncture manifests itself today, perhaps surprisingly, in musical terms. Beginning in 2015, the United States Defense Advanced Research Projects Agency (DARPA) began funding a project called Musical Interactive Collaborative Agent (MUSICA).(7) The project is part of DARPA’s Communicating with Computers program, which “aims to enable symmetric communication between people and computers in which machines are not merely receivers of instructions but collaborators, able to harness a full range of natural modes including language, gesture and facial or other expressions.”(8) Apparently music is one such mode: the end goal of MUSICA is to produce a jazz-playing robot capable of performing convincingly with human collaborators. One of the project’s directors, Kelland Thomas, suggests that “jazz and improvisation in music represent a pinnacle of human intellectual and mental achievement” (quoted in Del Prado 2015; see Chella and Manzo i 2012 for a similar argument and an explicit proposal for a jazz Turing test). And while DARPA is famous for funding unorthodox, long-shot projects, the clear implication is that jazz improvisation is so paradigmatically representative of more general modes of human interaction that its technological replication would have some kind of military value going beyond its intellectual or aesthetic meaning. Though li le detailed information on the project is publicly available, MUSICA is based in large part on machine learning techniques—advances in computational capabilities since Turing’s time that I will return to in some detail below. According to Thomas: “We’re going to build a database of musical transcription: every Miles Davis solo and every Louis Armstrong solo we’re going to hand-curate. We’re going to develop machine learning techniques to analyze these solos and find deeper relationships between the notes and the harmonies, and that will inform the system—that’ll be the knowledge base” (quoted in Thielman 2015). Though the broader claim— linking jazz to conversation in natural language and suggesting that modeling the former computationally is the best way to learn anything useful about the la er—evokes difficult questions about the relation between music and language, in its actual implementation MUSICA is more immediately concerned with questions of musical style. While the project’s few public statements never define jazz explicitly, it appears that what is at issue is a very specific, stereotypical view: smallto medium-sized jazz combos playing standards in a relatively conventional format; in other words, the neoclassical style associated with conservative institutions like Jazz at Lincoln Center (see Chapman 2018). While the machine learning model is intended to capture the characteristic ways players like Armstrong and Davis form musical u erances, it is far from clear exactly how the system would reconcile such varied styles as Armstrong’s 1920s New Orleans sound and Davis’s “electric” work from the 1970s, or even to what extent the project recognizes such differences as relevant for musical interaction. [0.4] This article examines several different approaches to computational improvisation, all in the orbit of jazz but implementing two very different styles. While li le information and no technical details about MUSICA are publicly available, another project, from the Robotic Musicianship Group at Georgia Tech’s Center for Music Technology, takes a similar approach to robotic jazz and has published a number of papers focused on the project’s technical aspects as well as many publicly available performance videos.(9) This robot, named Shimon, plays the marimba alongside humans in a traditional jazz combo based on a conventional understanding of key, harmony, and form, but with a complex machine learning-based model for generating solos. I compare Shimon to a computer program called Impro-Visor (Gillick, Tang, and Keller 2010), which does not perform in real time but which generates solos in a similar style using a different corpus-based machine learning model, and I contrast both of these systems with George Lewis’s Voyager, a long-standing project that stems from Lewis’s work in free improvisation.(10) [0.5] The juxtaposition has a dual focus: first, how do these computational approaches to improvisation handle the challenges of imitating human musical styles, and how is style itself theorized both implicitly and explicitly? In other words, how do the features and affordances of computation become musical in relation to such varied human improvisatory practices? Because all of these systems change frequently (for example, Voyager having been updated over the course of several decades, and Shimon having multiple modes of operation along with various upgrades), my account is not necessarily concerned with capturing any system’s exact functioning in any particular performance, nor am I interested in determining what the “best” computational implementation of jazz or free improvisation might be. Instead, for each system, I read the available technical details, however partial, for what they reveal about\",\"PeriodicalId\":44918,\"journal\":{\"name\":\"Music Theory Online\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Music Theory Online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30535/MTO.26.3.6\",\"RegionNum\":2,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MUSIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Music Theory Online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30535/MTO.26.3.6","RegionNum":2,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 3

摘要

尽管即兴创作计算机系统并不是什么新鲜事,但爵士乐最近已经成为许多新颖的计算机音乐项目的焦点,这些项目旨在令人信服地与人类一起即兴创作,特别关注使用机器学习来模仿人类风格。对爵士乐进行图灵测试的尝试,以及DARPA等组织对测试结果的兴趣,提出了关于即兴创作和音乐风格的本质的重要问题,也提出了关于爵士乐如何普遍代表“对话”或“民主”等广泛概念的重要问题。“本文通过考虑在乔治·刘易斯的自由即兴Voyager系统中直接演奏新古典主义爵士乐的机器人,阅读这些项目的技术细节,以及它们将风格的识别和产生理论化的方式,来探讨这些问题,而且在算法监控和大数据时代人机音乐的政治含义方面也是如此。第26卷,第3期,2020年9月版权所有©2020音乐理论学会[0.1]2016年,达特茅斯学院诺伊科姆计算科学研究所开始举办“创意艺术图灵测试”,这是一系列音乐和文学年度比赛,旨在“确定人们是否能区分人类和算法的创造力”。“(1)2018年最新比赛的音乐类别包括“音乐风格或自由创作”和“人类表演者即兴创作”,或者说“自由构图”,显然也是一种特定的风格。即兴创作挑战测试了一个系统的音乐性以及与爵士乐或自由创作中的人类合作者的互动性。虽然很少有人能声称通过了图灵测试而获奖,但开发算法音乐系统的研究人员经常引用图灵测试。(2) 索尼计算机科学实验室的Flow Machines项目由弗朗索瓦·帕切特(François Pachet)领导,直到他最近离开Spotify,该项目吹捧其Continuator(使用可变阶马尔可夫模型,通过呼叫和响应交换以人类钢琴家的风格即兴创作)通过了图灵测试,媒体报道在讨论同一团队最近的一个旨在创作流行歌曲的项目时经常引用这个词(Jordan 2017)。同样,计算机科学家Donya Quick的“Kuli a”系统也登上了头条,比如“如果音乐人工智能有图灵测试,‘Kuli a’可能会通过”(Synthopia 2015);最近的其他在线文章问道,“我们能做一个音乐图灵测试吗?”(Hornigold 2018),并回答说,“一个新的人工智能可以像人类作曲家一样写音乐”(Kaleagasi 2017)。[0.2]这些文章中的许多出现在网站上,名字像“奇点中心”和“未来主义”;通常,图灵测试与其说是对实际计算成就的衡量,不如说是对人工智能和计算的某种流行的技术乐观主义(即使愤世嫉俗)观点的标志。事实上,许多学者认为,测试本身被广泛误解,尤其是因为图灵本人,他在介绍“模仿游戏”的论文开始时挑衅道:“我建议考虑‘机器能思考吗?’这个问题”(1950433)。(3) 但他立即反悔,认为提出的问题是站不住脚的,并继续暗示游戏本身是一个“密切相关”的替代品。在游戏中,一男一女位于一个房间,一名审讯人员位于另一个房间;调查人员向男子和女子询问问题,以确定哪一个是哪一个,女子如实回答,男子试图让审讯者做出错误的选择。(4) 现在的问题不是“机器能思考吗?”而是“当机器在这个游戏中扮演[人]的角色时会发生什么?”(图灵1950434)。该测试的流行描述几乎从未考虑到游戏的两个相关方面,即包含性别成分和双重形式的模仿,即计算机模仿男性模仿女性。尽管测试几乎总是被理解为——甚至在许多学术报道中——在“机器还是人”之间做出选择的过程,但图灵没有明确表示机器的加入会改变审讯者的选择,从“男人还是女人”,而是人类的模仿能力本身——模仿的模仿。(6) [3.3]图灵在人工智能方面的工作也与他在第二次世界大战期间为英国军队所做的密码破译工作密不可分,而一个平行的连词在今天以音乐的形式表现出来,也许令人惊讶。 相反,对于每一个系统,我都会阅读可用的技术细节,无论这些细节多么片面
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“All of the Rules of Jazz”
Though improvising computer systems are hardly new, jazz has recently become the focus of a number of novel computer music projects aimed at convincingly improvising alongside humans, with a particular focus on the use of machine learning to imitate human styles. The a empt to implement a sort of Turing test for jazz, and interest from organizations like DARPA in the results, raises important questions about the nature of improvisation and musical style, but also about the ways jazz comes popularly to stand for such broad concepts as “conversation” or “democracy.” This essay explores these questions by considering robots that play straight-ahead neoclassical jazz alongside George Lewis’s free-improvising Voyager system, reading the technical details of such projects in terms of the ways they theorize the recognition and production of style, but also in terms of the political implications of human-computer musicking in an age of algorithmic surveillance and big data. Volume 26, Number 3, September 2020 Copyright © 2020 Society for Music Theory [0.1] In 2016, the Neukom Institute for Computational Science at Dartmouth College began hosting the “Turing Tests in Creative Arts,” a set of yearly competitions in music and literature intended to “determine whether people can distinguish between human and algorithmic creativity.”(1) The musical categories for the most recent contest in 2018 include “Musical Style or Free Composition” and “Improvisation with a Human Performer.” In the former, computational systems have to generate music in the style of Charlie Parker given a lead sheet, Bach’s chorales given a soprano line, electroacoustic music given some source sound, or “free composition,” apparently also in a given style. The improvisation challenge tests a system’s musicality and interactivity with a human collaborator in either jazz or free composition. And while few can claim to have won prizes for passing it, the Turing test is often invoked by researchers developing algorithmic musical systems. (2) The Flow Machines project at the Sony Computer Science Laboratories, led by François Pachet until his recent departure for Spotify, touts its Continuator (which uses a variable-order Markov model to improvise in the style of a human pianist by way of a call-and-response exchange) as having passed the Turing test, and press coverage often invokes the term when discussing a more recent project from the same team aimed at generating pop songs (Jordan 2017). Similarly, computer scientist Donya Quick’s “Kuli a” system has garnered headlines like, “If There Was a Turing Test for Music Artificial Intelligence, ‘Kuli a’ Might Pass It” (Synthtopia 2015); other recent online articles have asked, “Can We Make a Musical Turing Test?” (Hornigold 2018) and answered, “A New AI Can Write Music as Well as a Human Composer” (Kaleagasi 2017). [0.2] Many of these articles appear on sites with names like “SingularityHub” and “Futurism”; often, the Turing test is less a measure of actual computational achievement than a marker for a certain kind of popular techno-optimist (even if cynical) view of artificial intelligence and computation in general. Indeed, various scholars have argued that the test itself is widely misunderstood, owing not least to Turing himself, who begins the paper that introduces the “imitation game” with the provocation: “I propose to consider the question, ‘Can machines think?’” (1950, 433).(3) But he immediately backtracks, arguing that the question as posed is untenable, and goes on to suggest the game itself as a “closely related” replacement. In the game, a man and a woman are located in one room, and an interrogator in another; the la er asks questions of both the man and the woman in order to identify which is which, where the woman answers truthfully and the man tries to cause the interrogator to choose incorrectly.(4) The question now, rather than “Can machines think?” is “What will happen when a machine takes the part of [the man] in this game?” (Turing 1950, 434). Popular accounts of the test almost never account for two related aspects of the game, namely the inclusion of a gendered component and the doubled form of imitation involved, in which a computer imitates a man imitating a woman. Though the test is almost always understood—even in many scholarly accounts—as a ma er of making a choice between “machine or human,” Turing gives no clear indication that the addition of the machine changes the interrogator’s options from “man or woman.”(5) Thus the “imitation” in the game is not directly of human thought by mechanical means, but rather of human imitative abilities themselves—the imitation of imitation.(6) [0.3] Turing’s work on artificial intelligence is also inseparable from his codebreaking work for the British military during the Second World War, and a parallel conjuncture manifests itself today, perhaps surprisingly, in musical terms. Beginning in 2015, the United States Defense Advanced Research Projects Agency (DARPA) began funding a project called Musical Interactive Collaborative Agent (MUSICA).(7) The project is part of DARPA’s Communicating with Computers program, which “aims to enable symmetric communication between people and computers in which machines are not merely receivers of instructions but collaborators, able to harness a full range of natural modes including language, gesture and facial or other expressions.”(8) Apparently music is one such mode: the end goal of MUSICA is to produce a jazz-playing robot capable of performing convincingly with human collaborators. One of the project’s directors, Kelland Thomas, suggests that “jazz and improvisation in music represent a pinnacle of human intellectual and mental achievement” (quoted in Del Prado 2015; see Chella and Manzo i 2012 for a similar argument and an explicit proposal for a jazz Turing test). And while DARPA is famous for funding unorthodox, long-shot projects, the clear implication is that jazz improvisation is so paradigmatically representative of more general modes of human interaction that its technological replication would have some kind of military value going beyond its intellectual or aesthetic meaning. Though li le detailed information on the project is publicly available, MUSICA is based in large part on machine learning techniques—advances in computational capabilities since Turing’s time that I will return to in some detail below. According to Thomas: “We’re going to build a database of musical transcription: every Miles Davis solo and every Louis Armstrong solo we’re going to hand-curate. We’re going to develop machine learning techniques to analyze these solos and find deeper relationships between the notes and the harmonies, and that will inform the system—that’ll be the knowledge base” (quoted in Thielman 2015). Though the broader claim— linking jazz to conversation in natural language and suggesting that modeling the former computationally is the best way to learn anything useful about the la er—evokes difficult questions about the relation between music and language, in its actual implementation MUSICA is more immediately concerned with questions of musical style. While the project’s few public statements never define jazz explicitly, it appears that what is at issue is a very specific, stereotypical view: smallto medium-sized jazz combos playing standards in a relatively conventional format; in other words, the neoclassical style associated with conservative institutions like Jazz at Lincoln Center (see Chapman 2018). While the machine learning model is intended to capture the characteristic ways players like Armstrong and Davis form musical u erances, it is far from clear exactly how the system would reconcile such varied styles as Armstrong’s 1920s New Orleans sound and Davis’s “electric” work from the 1970s, or even to what extent the project recognizes such differences as relevant for musical interaction. [0.4] This article examines several different approaches to computational improvisation, all in the orbit of jazz but implementing two very different styles. While li le information and no technical details about MUSICA are publicly available, another project, from the Robotic Musicianship Group at Georgia Tech’s Center for Music Technology, takes a similar approach to robotic jazz and has published a number of papers focused on the project’s technical aspects as well as many publicly available performance videos.(9) This robot, named Shimon, plays the marimba alongside humans in a traditional jazz combo based on a conventional understanding of key, harmony, and form, but with a complex machine learning-based model for generating solos. I compare Shimon to a computer program called Impro-Visor (Gillick, Tang, and Keller 2010), which does not perform in real time but which generates solos in a similar style using a different corpus-based machine learning model, and I contrast both of these systems with George Lewis’s Voyager, a long-standing project that stems from Lewis’s work in free improvisation.(10) [0.5] The juxtaposition has a dual focus: first, how do these computational approaches to improvisation handle the challenges of imitating human musical styles, and how is style itself theorized both implicitly and explicitly? In other words, how do the features and affordances of computation become musical in relation to such varied human improvisatory practices? Because all of these systems change frequently (for example, Voyager having been updated over the course of several decades, and Shimon having multiple modes of operation along with various upgrades), my account is not necessarily concerned with capturing any system’s exact functioning in any particular performance, nor am I interested in determining what the “best” computational implementation of jazz or free improvisation might be. Instead, for each system, I read the available technical details, however partial, for what they reveal about
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
25.00%
发文量
26
审稿时长
42 weeks
期刊介绍: Music Theory Online is a journal of criticism, commentary, research and scholarship in music theory, music analysis, and related disciplines. The refereed open-access electronic journal of the Society for Music Theory, MTO has been in continuous publication since 1993. New issues are published four times per year and include articles, reviews, commentaries, and analytical essays. In addition, MTO publishes a list of job opportunities and abstracts of recently completed dissertations.
期刊最新文献
Xenakis’ Sieve Theory Billy Joel’s Enharmonic Duplicity Emotional Tones and Emotional Texts Becoming and Disintegration in Wolfgang Rihm’s Fifth String Quartet, Ohne Titel Review of Joel Lester, Brahms’s Violin Sonatas: Style, Structure, Performance (New York: Oxford University Press, 2020)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1