{"title":"基于熵和结构洞的节点排序方法","authors":"C. Ezeh, Tao Ren, Yan-Jie Xu, Shixuan Sun, Zhe Li","doi":"10.53106/160792642021092205007","DOIUrl":null,"url":null,"abstract":"Several research works had been carried out to discover suitable algorithms to quantify node centralities. Among the many existing centrality metrics, only few consider centrality at the sub-graph level or deal with structural hole capabilities of pivot nodes. Research has proven the importance of sub-graph information in distinguishing influential nodes. In this work, two centrality metrics are proposed to distinguish and rank nodes in complex networks. The first metric called Sub-graph Degree Information centrality is based on entropy quantification of a node’s sub-graph degree distribution to determine its influence. The second metric called Sub-graph Degree and Structural Hole centrality considers a node’s sub-graph degree distribution and its structural hole property. The two metrics are designed to efficiently support weighted and unweighted networks. Performance evaluations were done on five real world datasets and one artificial network. The proposed metrics were equally compared against some classic centrality metrics. The results show that the proposed metrics can accurately distinguish and rank nodes distinctly on complex networks. They can equally discover highly influential and spreader nodes capable of causing epidemic spread and maximum network damage.","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"22 1","pages":"1009-1017"},"PeriodicalIF":0.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy and Structural-Hole Based Node Ranking Methods\",\"authors\":\"C. Ezeh, Tao Ren, Yan-Jie Xu, Shixuan Sun, Zhe Li\",\"doi\":\"10.53106/160792642021092205007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several research works had been carried out to discover suitable algorithms to quantify node centralities. Among the many existing centrality metrics, only few consider centrality at the sub-graph level or deal with structural hole capabilities of pivot nodes. Research has proven the importance of sub-graph information in distinguishing influential nodes. In this work, two centrality metrics are proposed to distinguish and rank nodes in complex networks. The first metric called Sub-graph Degree Information centrality is based on entropy quantification of a node’s sub-graph degree distribution to determine its influence. The second metric called Sub-graph Degree and Structural Hole centrality considers a node’s sub-graph degree distribution and its structural hole property. The two metrics are designed to efficiently support weighted and unweighted networks. Performance evaluations were done on five real world datasets and one artificial network. The proposed metrics were equally compared against some classic centrality metrics. The results show that the proposed metrics can accurately distinguish and rank nodes distinctly on complex networks. They can equally discover highly influential and spreader nodes capable of causing epidemic spread and maximum network damage.\",\"PeriodicalId\":50172,\"journal\":{\"name\":\"Journal of Internet Technology\",\"volume\":\"22 1\",\"pages\":\"1009-1017\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642021092205007\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.53106/160792642021092205007","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Entropy and Structural-Hole Based Node Ranking Methods
Several research works had been carried out to discover suitable algorithms to quantify node centralities. Among the many existing centrality metrics, only few consider centrality at the sub-graph level or deal with structural hole capabilities of pivot nodes. Research has proven the importance of sub-graph information in distinguishing influential nodes. In this work, two centrality metrics are proposed to distinguish and rank nodes in complex networks. The first metric called Sub-graph Degree Information centrality is based on entropy quantification of a node’s sub-graph degree distribution to determine its influence. The second metric called Sub-graph Degree and Structural Hole centrality considers a node’s sub-graph degree distribution and its structural hole property. The two metrics are designed to efficiently support weighted and unweighted networks. Performance evaluations were done on five real world datasets and one artificial network. The proposed metrics were equally compared against some classic centrality metrics. The results show that the proposed metrics can accurately distinguish and rank nodes distinctly on complex networks. They can equally discover highly influential and spreader nodes capable of causing epidemic spread and maximum network damage.
期刊介绍:
The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere.
Topics of interest to JIT include but not limited to:
Broadband Networks
Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business)
Network Management
Network Operating System (NOS)
Intelligent systems engineering
Government or Staff Jobs Computerization
National Information Policy
Multimedia systems
Network Behavior Modeling
Wireless/Satellite Communication
Digital Library
Distance Learning
Internet/WWW Applications
Telecommunication Networks
Security in Networks and Systems
Cloud Computing
Internet of Things (IoT)
IPv6 related topics are especially welcome.