评估安全到失败的洪水解决方案,并将安全到失败概念纳入AEC教育,以发展有韧性的沿海城市

Rubaya Rahat, Piyush Pradhananga, Mohamed ElZomor
{"title":"评估安全到失败的洪水解决方案,并将安全到失败概念纳入AEC教育,以发展有韧性的沿海城市","authors":"Rubaya Rahat, Piyush Pradhananga, Mohamed ElZomor","doi":"10.1108/ijdrbe-04-2022-0041","DOIUrl":null,"url":null,"abstract":"\nPurpose\nSafe-to-fail (SF) is an emerging resilient design approach that has the potential to minimize the severity of flood damages. The purpose of this study is to explore the SF design strategies to reduce flood disaster damages in US coastal cities. Therefore, this study addresses two research questions: identifying the most suitable SF criteria and flood solution alternatives for coastal cities from industry professionals’ perspective; and investigating the controlling factors that influence the AEC students’ interest to learn about SF concepts through the curricula.\n\n\nDesign/methodology/approach\nThis study used the analytical hierarchy process to evaluate the SF criteria and flood solutions where data were collected through surveying 29 Department of Transportation professionals from different states. In addition, the study adopted a quantitative methodology by surveying 55 versed participants who reside in a coastal area and have coastal flood experiences. The data analysis included ordinal probit regression and descriptive analysis.\n\n\nFindings\nThe results suggest that robustness is the highest weighted criterion for implementing SF design in coastal cities. The results demonstrated that ecosystem restoration is the highest-ranked SF flood solution followed by green infrastructure. Moreover, the results highlighted that age, duration spent in the program and prior knowledge of SF are significantly related to AEC students’ interest to learn this concept.\n\n\nOriginality/value\nSF design anticipates failures while designing infrastructures thus minimizing failure consequences due to flood disasters. The findings can facilitate the implementation of the SF design concept during the construction of new infrastructures in coastal cities as well as educate the future workforces to contribute to developing resilient built environments.\n","PeriodicalId":45983,"journal":{"name":"International Journal of Disaster Resilience in the Built Environment","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of safe-to-fail flood solution alternatives and integration of safe-to-fail concept in AEC education to develop resilient coastal cities\",\"authors\":\"Rubaya Rahat, Piyush Pradhananga, Mohamed ElZomor\",\"doi\":\"10.1108/ijdrbe-04-2022-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nSafe-to-fail (SF) is an emerging resilient design approach that has the potential to minimize the severity of flood damages. The purpose of this study is to explore the SF design strategies to reduce flood disaster damages in US coastal cities. Therefore, this study addresses two research questions: identifying the most suitable SF criteria and flood solution alternatives for coastal cities from industry professionals’ perspective; and investigating the controlling factors that influence the AEC students’ interest to learn about SF concepts through the curricula.\\n\\n\\nDesign/methodology/approach\\nThis study used the analytical hierarchy process to evaluate the SF criteria and flood solutions where data were collected through surveying 29 Department of Transportation professionals from different states. In addition, the study adopted a quantitative methodology by surveying 55 versed participants who reside in a coastal area and have coastal flood experiences. The data analysis included ordinal probit regression and descriptive analysis.\\n\\n\\nFindings\\nThe results suggest that robustness is the highest weighted criterion for implementing SF design in coastal cities. The results demonstrated that ecosystem restoration is the highest-ranked SF flood solution followed by green infrastructure. Moreover, the results highlighted that age, duration spent in the program and prior knowledge of SF are significantly related to AEC students’ interest to learn this concept.\\n\\n\\nOriginality/value\\nSF design anticipates failures while designing infrastructures thus minimizing failure consequences due to flood disasters. The findings can facilitate the implementation of the SF design concept during the construction of new infrastructures in coastal cities as well as educate the future workforces to contribute to developing resilient built environments.\\n\",\"PeriodicalId\":45983,\"journal\":{\"name\":\"International Journal of Disaster Resilience in the Built Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Disaster Resilience in the Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijdrbe-04-2022-0041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Disaster Resilience in the Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijdrbe-04-2022-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

SF (safety -to-fail)是一种新兴的弹性设计方法,有可能将洪水破坏的严重程度降到最低。本研究的目的是探讨美国沿海城市的顺丰设计策略,以减少洪水灾害造成的损失。因此,本研究解决了两个研究问题:从行业专家的角度确定最适合沿海城市的SF标准和洪水解决方案;调查影响AEC学生通过课程学习SF概念兴趣的控制因素。设计/方法/方法本研究使用层次分析法来评估SF标准和洪水解决方案,数据是通过调查来自不同州的29名交通运输部专业人员收集的。此外,本研究采用定量方法,调查了55名居住在沿海地区并有沿海洪水经历的资深参与者。数据分析包括有序概率回归和描述性分析。结果表明,稳健性是在沿海城市实施顺丰设计的最高加权标准。结果表明,生态系统恢复是SF解决方案中排名最高的,其次是绿色基础设施。此外,研究结果强调,年龄、在项目中度过的时间和对SF的先验知识与AEC学生学习这一概念的兴趣显著相关。原创性/价值f设计在设计基础设施时预测故障,从而最大限度地减少由于洪水灾害造成的故障后果。研究结果可以促进SF设计理念在沿海城市新基础设施建设中的实施,并教育未来的劳动力为发展弹性建筑环境做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of safe-to-fail flood solution alternatives and integration of safe-to-fail concept in AEC education to develop resilient coastal cities
Purpose Safe-to-fail (SF) is an emerging resilient design approach that has the potential to minimize the severity of flood damages. The purpose of this study is to explore the SF design strategies to reduce flood disaster damages in US coastal cities. Therefore, this study addresses two research questions: identifying the most suitable SF criteria and flood solution alternatives for coastal cities from industry professionals’ perspective; and investigating the controlling factors that influence the AEC students’ interest to learn about SF concepts through the curricula. Design/methodology/approach This study used the analytical hierarchy process to evaluate the SF criteria and flood solutions where data were collected through surveying 29 Department of Transportation professionals from different states. In addition, the study adopted a quantitative methodology by surveying 55 versed participants who reside in a coastal area and have coastal flood experiences. The data analysis included ordinal probit regression and descriptive analysis. Findings The results suggest that robustness is the highest weighted criterion for implementing SF design in coastal cities. The results demonstrated that ecosystem restoration is the highest-ranked SF flood solution followed by green infrastructure. Moreover, the results highlighted that age, duration spent in the program and prior knowledge of SF are significantly related to AEC students’ interest to learn this concept. Originality/value SF design anticipates failures while designing infrastructures thus minimizing failure consequences due to flood disasters. The findings can facilitate the implementation of the SF design concept during the construction of new infrastructures in coastal cities as well as educate the future workforces to contribute to developing resilient built environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
49
期刊最新文献
Evaluating the impacts of anticipated sea level rise, climate change and land use land cover scenarios on the rice crop in Alappuzha, Kerala and strategies to build climate responsive agriculture Evaluating the impacts of anticipated sea level rise, climate change and land use land cover scenarios on the rice crop in Alappuzha, Kerala and strategies to build climate responsive agriculture Role of the built environment stakeholders in climate change adaptation Roles and responsibilities of stakeholders involved in local-level flood risk management: a study in the Deduru Oya basin in Sri Lanka Application of smart systems and emerging technologies for disaster risk reduction and management in Nepal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1